Genes que expresan resistencia a carbapenemasas presentes en Pseudomona aeruginosa

Palabras clave: fibrosis quística, carbapenémicas, técnicas moleculares, detección, PCR, Perú

Resumen

Objetivo. Describir los genes que expresan resistencia a la carbapenemasas presentes en la Pseudomona aeruginosa. Métodos. Se realizó la revisión de la literatura científica utilizando el método PRISMA, durante febrero de 2020, en las bases de datos Pubmed, Scopus, y Scielo. Resultados. Se describe la reacción en cadena de la polimerasa (PCR) como la técnica más utilizada; además, se hallaron los genes blancos moleculares de hiperexpresión de múltiples bombas de expulsión que  generan la resistencia bacteriana. Conclusiones. La PCR convencional y multiplex es la técnica más utilizada para el diagnóstico de genes que expresan resistencia a carbapenemasas presentes en Pseudomona aeruginosa de pacientes con fibrosis quística, al ser la más estandarizada y tener alta sensibilidad, y especificidad, habiéndose detectado asimismo genes IMP, VIM, OXA, MexAB-OprM,  MexCD-OprJ, MexEF-OprN y MexXY-OprM.

Descargas

La descarga de datos todavía no está disponible.

Citas

1. Murray P, Kobayashi G, Pfaller M, Rosenthal K. Laboratory diagnosis of bacterial diseases. Pseudomonas and related nonfermenting bacteria. Medical Microbiology. 2a ed. Madrid: Harcourt Brace; 1997.

2. Ramsey BW. Management of pulmonary disease in patients with cystic fibrosis. New Engl J Med. 1996; 335(3):179-187. doi: 10.1056/NEJM199607183350307

3. Cantón R, Cobos N, De Gracia J, Baquero F, Honorato J, Gartner S, Álvarez A, Salcedo A, Oliver A, Gracia-Quetglas E, Spanish Consensus Group for Antimicrobial Therapy in the Cystic Fibrosis Patient. Antimicrobial treatment against lung colonization by pseudomonas aeruginosa in the patient with cystic fibrosis. Arch Bronconeumol. 2005; 41 Suppl 1: 1-25. doi: 10.1111/j.1469-0691.2005.01217.x

4. Campos M, Navarro R, Amuy E, Vargas A, Herrera Marco L. Bacterial isolates from the respiratory tract of children with cystic fibrosis of the pancreas. Rev méd Hosp Nac Niños (Costa Rica). 2000; 35 (1-2): 13-19.

5. Coutinho HDM, Falcão-Silva V, Fernandes Gonçalves G. Pulmonary bacterial agents and antibiotic therapy in patients with cystic fibrosis: a guide for healthcare personnel. International Archives of Medicine. 2008; 1(1): 1-7. doi: 10.1186/1755-7682-1-24

6. Pollack M. Pseudomonas aeruginosa. En: Mandell GL, Bennett JE, Dolin R, eds. Principles and practice of infectious diseases. 5a ed. Nueva York: Churchill Livingstone; 2000. p. 1980-2003.

7. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother. 2006; 50(1):43-48. doi: 10.1128/AAC.50.1.43-48.2006

8. Bergmans DC, Bonten MJ, Van Tiel FH, Gaillard CA, van der Geest S, Wilting RM, et al. Cross-colonisation with pseudomonas aeruginosa
of patients in an intensive care unit. Thorax. 1998; 53(12):1053‐1058. doi:10.1136/thx.53.12.1053

9. Lynch JP. Hospital-acquired pneumonia: risk factors, microbiology, and treatment. Chest. 2001; 119(2 Suppl): 373S-384S. doi: 10.1378/chest.119.2_suppl.373s.

10. Gilligan PH. Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev.1991; 4(1): 35-51. doi: 10.1128/cmr.4.1.35

11. Martinez-Solano L, Macia MD, Fajardo A, Oliver A, Martinez JL. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin Infect Dis. 2008; 47(12): 1526-1533. doi: 10.1086/593186

12. Juan C, Macia MD, Gutiérrez O, Vidal C, Pérez JL, Oliver A. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother. 2005; 49(11): 4733-4738. doi: 10.1128/AAC.49.11.4733-4738.2005

13. Moya B, Dötsch A, Juan C, Blázquez J, Zamorano L, Haussler S, Oliver A. Beta-lactam resistance response triggered by inactivation of a non-essential penicillin-binding protein. PLoS Pathog. 2009; 5(3).1-10. doi: 10.1371/journal.ppat.1000353

14. Pedersen SS. Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS Suppl. 1992; 28: 1-79.

15. Souza- Días MB, Habert AB, Borrasca V, Stempliuk V, Ciolli A, Araujo MR, et al. Salvage of long-term central venous catheters during an outbreak of Pseudomonas putida and Stenotrophomonas maltophilia infections associated with contaminated heparin catheter-lock solution. Infect Control Hosp Epidemiol. 2008; 29(2): 125-30. doi: 10.1086/526440

16. Macia M, Blanquer D, Togores B, Sauleda J, Pérez JL, Oliver A. Hypermutation is a key factor in development of multiplentimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother. 2005;49(8):3382-3386. doi: 10.1128/AAC.49.8.3382-3386.2005

17. Oliver A, Cantón R, Campo P, Baquero F, Blazquez J. High frequency of hypermutable Pseudomonas aeruginosa in
cystic fibrosis lung infection. Science. 2000; 288(5469): 1251-1254.doi: 10.1126/science.288.5469.1251

18. Mesaros N, Nordmann P, Plesiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, et al. Pseudomonas aeruginosa: resistance and therapeutics options in the turn of the new millennium. Clin Microbiol Infect. 2007; 13(6): 560-578. doi: 10.1111/j.1469-0691.2007.01681.x

19. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006; 50(5): 1633-1641. doi: 10.1128/AAC.50.5.1633-1641. 2006

20. Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plesiat P. Clinical strains of Pseudomonas aeruginosa overproducing exAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother. 2004; 48(5):1797–1802. doi: 10.1128/aac.48.5.1797-1802.2004

21. Lodge JM, Minchin SD, Piddock LJ, Busby JW. Cloning, sequencing, and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC -lactamase. J Biochem. 1990; 272: 627–631. https://doi.org/10.1042/bj2720627

22. Maseda H, Sawada I, Saito K, Uchiyama H, Nakae T, Nomura N. Enhancement of the mexAB-oprM efflux pump expression by a quorum- sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2004; 48(4): 1320 -1328. doi: 10.1128/aac.48.4.1320-1328.2004.

23. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci.1980; 289(1036): 321-331. doi: 10.1098/rstb.1980.0049

24. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005; 18(2): 306-325. doi: 10.1128/CMR.18.2.306-325.2005

25. Rodriguez-Martinez JM, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009; 53 (11): 4783-4788. doi: 10.1128/AAC.00574-09.

26. Xu J, Moore JE, Murphy PG. Millar B, Elborn J. Early detection of Pseudomonas aeruginosa. Comparison of conventional versus molecular (PCR) detection directly from adult patients with cystic fibrosis (CF). Ann Clin Microbiol Antimicrob. 2004; 20;3(1): 1-5. doi: 10.1186/14760711-3-21

27. Ferroni A, Sermet-Gaudelus I, Abachin E, Quesne G, Lenoir G, Berche P, et al. Use of 16S rRNA gene sequencing for identification of nonfermenting gram-negative bacilli recovered from patients attending a single cystic fibrosis center. J Clin Microbiol. 2002; 40(10): 3793-3797. doi: 10.1128/JCM.40.10.3793-3797.2002

28. Anzai Y, Kim H, Park J, Wakabayashi H, Oyaizu. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol. 2000; 50(4):1563–1589. doi: 10.1099/00207713-50-4-1563

29. LiPuma JJ, Dulaney BJ, McMenamin JD, Whitby PW, Stull TL, Coenye T, Vandamme P. Development of rRNA-based PCR assays for identification of Burkholderia cepacia complex isolates recovered from cystic fibrosis patients. J Clin Microbiol. 1999; 37(10): 3167-3170. doi:10.1128/JCM.37.10.3167-3170.1999

30. Cantóna R, Máiz L, Escribanod A, Olveirae C, Oliverb A, Asensiog O, et al. Spanish consensus for the prevention and treatment of bronchial infection by Pseudomonas aeruginosa in patients with cystic fibrosis. Arch Bronconeumol. 2015; 51(3): 140-150. doi: 10.1016/j.arbres.2014.09.021
Publicado
2021-01-25