Hematological and inflammatory indicators as diagnostic tools in community-acquired pneumonia, Ecuador
DOI:
https://doi.org/10.37711/rpcs.2025.7.4.11Keywords:
community-acquired pneumonia, C-reactive protein, neutrophils, lymphocytes, platelets, differential diagnosis, inflammationAbstract
Objective. To evaluate the discriminative ability of C-reactive protein (CRP), the neutrophil-to-lymphocyte ratio (NLR), and the platelet-to-lymphocyte ratio (PLR) to differentiate bacterial and viral etiologies of community-acquired pneumonia (CAP). Methods. A retrospective observational study was conducted at the General Hospital of the Instituto Ecuatoriano de Seguridad Social in Riobamba, Ecuador, between January 2023 and July 2025. A total of 100 patients with CAP and microbiologically confirmed diagnoses were included (50 bacterial and 50 viral cases). Complete blood count parameters and CRP levels were analyzed at admission. Receiver operating characteristic (ROC) curves were constructed for each biomarker, optimal cutoff points were determined, and multivariable logistic regression analysis was performed. Results. The CURB-65 severity score and length of hospital stay were higher in the bacterial CAP group (p < 0.001). NLR, CRP, and PLR values were significantly higher in bacterial pneumonia (p < 0.001). Diagnostic performance was as follows: NLR, AUC = 0.99 (cutoff > 5.85); CRP, AUC = 0.94 (cutoff > 65.55 mg/L); and PLR, AUC = 0.83 (cutoff > 181.7). In multivariable analysis, an NLR > 5.85 was identified as an independent predictor of bacterial etiology (adjusted OR 14.8, 95% CI: 4.20–52.10), along with age (adjusted OR 1.04, 95% CI: 1.01–1.07) and a CURB-65 score ≥ 3 (adjusted OR 5.60, 95% CI: 1.60–19.50). Conclusions. NLR demonstrated the best diagnostic performance, followed by CRP and PLR. These accessible biomarkers may support clinical decision-making and the rational use of antibiotics; however, prospective multicenter validation is required.
Downloads
References
1. World Health Organization (WHO). Pneumonia: Key Facts [Internet]. 2023 [Consultado el 16 de julio de 2025]. Disponible en: https://www.who.int/news-r
2. Martin-Loeches I, Reyes LF, Rodriguez A. Severe community-acquired pneumonia (sCAP): advances in management and future directions. Thorax. [Internet]. 2025 [Consultado el 25 de junio de 2025];80(8):565-575. Disponible en: https://doi: 10.1136/thorax-2024-222296
3. Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. [Internet]. 2019 [Consultado el 19 de junio de 2025];200(7):e45-e67. https://doi.10.1164/rccm.201908-1581ST
4. Organización Panamericana de la Salud (OPS) Enfermedades respiratorias agudas en las Américas [Internet]. Washington, D.C.: OPS; 2022 [Consultado el 16 de julio de 2025]. Disponible en: https://www.paho.org/es/temas/influenza-sars-cov-2-vsr-otros-virus-respiratorios
5. Ministerio de Salud Pública del Ecuador (MSP). Anuario de Estadísticas de Morbilidad Hospitalaria 2023. [Internet]. Quito: MSP; 2023 [Consultado el 16 de julio de 2025]. Disponible en: https://www.salud.gob.ec/informacion-estadistica-de-produccion-de-salud/
6. Bhuiyan MU, Blyth CC, West R, Lang J, Rahman T, Granland C, et al. Combination of clinical symptoms and blood biomarkers can improve discrimination between bacterial or viral community-acquired pneumonia in children. BMC Pulm Med. [Internet].2019 [Consultado el 26 de agosto de 2025];19(1):71. https://doi.10.1186/s12890-019-0835-5
7. Omaggio L, Franzetti L, Caiazzo R, Coppola C, Valentino MS, Giacomet V. Utility of C-reactive protein and procalcitonin in community-acquired pneumonia in children: a narrative review. Curr Med Res Opin. [Internet].2024 [Consultado el 16 de julio de 2025];40(12):2191-2200. https://doi.10.1080/03007995.2024.2425383
8. Cataudella E, Giraffa CM, Di Marca S, Pulvirenti A, Alaimo S, Pisano M, et al. Neutrophil-To-Lymphocyte Ratio: An Emerging Marker Predicting Prognosis in Elderly Adults with Community-Acquired Pneumonia. J Am Geriatr Soc. [Internet]. 2017 [Consultado el 16 de junio de 2025];65(8):1796-1801. https://doi.10.1111/jgs.14894
9. Fois AG, Paliogiannis P, Scano V, Cau S, Babudieri S, Perra R, et al. The Systemic Inflammation Index on Admission Predicts In-Hospital Mortality in COVID-19 Patients. Molecules [Internet]. 2020 [Consultado el 26 de junio de 2025];25(23):5725. https://doi.10.3390/molecules25235725
10. Enersen CC, Egelund GB, Petersen PT, Andersen S, Ravn P, Rohde G, et al. The ratio of neutrophil-to-lymphocyte and platelet-to-lymphocyte and association with mortality in community-acquired pneumonia: a derivation-validation cohort study. Infection [Internet]. 2023 [Consultado el 16 de septiembre de 2025];51(5):1339-1347. https://doi.10.1007/s15010-023-01992-2
11. Dirección Xeral de Saúde Pública. EPIDAT: Programa para análisis epidemiológico de datos tabulados. Consellería de Sanidade, Xunta de Galicia. Versión 4.2 [Software] 2016 [Consultado el 16 de septiembre de 2025]. Disponible en: https://www.sergas.es/Saude-publica/EPIDAT
12. Zaki HA, Hamdi Alkahlout B, Shaban E, Mohamed EH, Basharat K, Elsayed WAE, et al. The Battle of the Pneumonia Predictors: A Comprehensive Meta-Analysis Comparing the Pneumonia Severity Index (PSI) and the CURB-65 Score in Predicting Mortality and the Need for ICU Support. Cureus. [Internet]. 2023 [Consultado el 26 de septiembre de 2025]; 15(7):e42672. https://doi.10.7759/cureus.42672
13. Farida H, Triasih R, Lokida D, Mardian Y, Salim G, Wulan WN, et al. Epidemiologic, clinical, and serum markers may improve discrimination between bacterial and viral etiologies of childhood pneumonia. Front Med. (Lausanne). [Internet]. 2023 [Consultado el 12 de septiembre de 2025];10:1140100. https://doi.10.3389/fmed.2023.1140100
14. Sharma Y, Thompson C, Zinellu A, Shahi R, Horwood C, Mangoni AA. The role of the neutrophil-to-lymphocyte ratio in predicting outcomes among patients with community-acquired pneumonia. Clin Med (Lond). [Internet]. 2025 [Consultado el 16 de septiembre de 2025];25(1):100278. https://doi.10.1016/j.clinme.2024.100278
15. Johansson C, Kirsebom FCM. Neutrophils in respiratory viral infections. Mucosal Immunol. [Internet]. 2021 [Consultado el 15 de septiembre de 2025];14,815-827. Disponible en: https://doi.org/10.1038/s41385-021-00397-4
16. Grudzinska FS, Brodlie M, Scholefield BR, Jackson T, Scott A, Thickett DR, et al. Neutrophils in community-acquired pneumonia: parallels in dysfunction at the extremes of age. Thorax. [Internet]. 2020 [Consultado el 10 de octubre de 2025];75(2):164-171. https://doi.10.1136/thoraxjnl-2018-212826
17. Liu G, Jiang X, Zeng X, Pan Y, Xu H. Analysis of Lymphocyte Subpopulations and Cytokines in COVID-19-Associated Pneumonia and Community-Acquired Pneumonia. J Immunol Res. [Internet]. 2021 [Consultado el 15 de octubre de 2025];9;2021:6657894. https://doi.10.1155/2021/6657894
18. Thomas J, Pociute A, Kevalas R, Malinauskas M, Jankauskaite L. Blood biomarkers differentiating viral versus bacterial pneumonia aetiology: a literature review. Ital J Pediatr. [Internet]. 2020 [Consultado el 16 de octubre de 2025]; 9;46(1):4. https://doi.10.1186/s13052-020-0770-3
19. Esposito S, Di Gangi M, Cardinale F, Baraldi E, Corsini I, Da Dalt L, et al. Ita-CAP Study Group. Sensitivity and Specificity of Soluble Triggering Receptor Expressed on Myeloid Cells-1, Midregional Proatrial Natriuretic Peptide and Midregional Proadrenomedullin for Distinguishing Etiology and to Assess Severity in Community-Acquired Pneumonia. PLoS One. [Internet].2016 [Consultado el 10 de octubre de 2025];15(11):e0163262. https://doi.10.1371/journal.pone.0163262
20. Bhuiyan MU, Blyth CC, West R, Lang J, Rahman T, Granland C, et al. Combination of clinical symptoms and blood biomarkers can improve discrimination between bacterial or viral community-acquired pneumonia in children. BMC Pulm Med. [Internet]. 2019 [Consultado el 20 de octubre de 2025];19(1):71. https://doi.10.1186/s12890-019-0835-5
21. Elemraid MA, Rushton SP, Thomas MF, Spencer DA, Gennery AR, Clark JE. Utility of inflammatory markers in predicting the aetiology of pneumonia in children. Diagn Microbiol Infect Dis. [Internet]. 2014 [Consultado el 5 de octubre de 2025];79(4):458-62. https://doi.10.1016/j.diagmicrobio.2014.04.006
22. Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Lek Listy. [Internet]. 2021[Consultado el 10 de agosto de 2025]; 122(7):474-488. https://doi.10.4149/BLL_2021_078
23. Mosquera-Sulbaran JA, Pedreañez A, Carrero Y, Callejas D. C-reactive protein as an effector molecule in Covid-19 pathogenesis. Rev Med Virol. 2021 [Consultado el 10 de octubre de 2025];31(6):e2221. https://doi.10.1002/rmv.2221
24. Pedreañez A, Carrero Y, Vargas R, Fonseca JPH, Mosquera J. Role of C-reactive protein in cervical intraepithelial neoplasia/cancer. Pathol Res Pract. [Internet]. 2025 [Consultado el 18 de octubre de 2025];19;276:156274. https://doi.10.1016/j.prp.2025.156274
25. Cui XJ, Xie B, Zhu KW, Liao QQ, Zhou JC, Du S, et al. Prognostic value of the platelet, neutrophil, monocyte, basophil, and eosinophil to lymphocyte ratios in patients with severe community-acquired pneumonia (SCAP). Sci Rep. [Internet]. 2024 [Consultado el 18 de octubre de 2025];14,30406. https://doi.org/10.1038/s41598-024-80727-1
26. Koupenova M, Livada AC, Morrell CN. Platelet and Megakaryocyte Roles in Innate and Adaptive Immunity. Circ Res. [Internet]. 2022 [Consultado el 13 de octubre de 2025];130(2):288-308. https://doi.10.1161/CIRCRESAHA.121.319821
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Diego Tene Salcán, Adriana Pedreáñez Santana

This work is licensed under a Creative Commons Attribution 4.0 International License.



















