Genes expressing carbapenemase resistance present in Pseudomona aeruginosa
DOI:
https://doi.org/10.37711/rpcs.2021.3.1.244Keywords:
fibrosis quística, carbapenémicas, técnicas moleculares, detección, PCR, PerúAbstract
Objective. To describe the genes expressing carbapenemase resistance present in Pseudomona aeruginosa. Methods. The scientific literature was reviewed using the PRISMA method during February 2020 in the Pubmed, Scopus and Scielo databases. Results. The polymerase chain reaction (PCR) is described as the most commonly used technique; in addition, molecular white hyperexpression genes of multiple ejection pumps that generate bacterial resistance were found. Conclusions. Conventional and multiplex PCR is the most widely used technique for the diagnosis of genes that express resistance to carbapenemases present in Pseudomona aeruginosa of patients with cystic fibrosis, being the most standardized and have high sensitivity, and specificity, also having detected IMP, VIM, OXA, MexAB-OprM, MexCD-OprJ, MexEF-OprN and MexXY-OprM genes.
Downloads
References
1. Murray P, Kobayashi G, Pfaller M, Rosenthal K. Labora-tory diagnosis of bacterial diseases. Pseudomonas and related non-fermenting bacteria. Medical Microbiology. 2a ed. Madrid: Harcourt Brace; 1997.
2. Ramsey BW. Management of pulmonary disease in patients with cystic fibrosis. New Engl J Med. 1996; 335(3):179-187. doi: 10.1056/NEJM199607183350307
3. Cantón R, Cobos N, De Gracia J, Baquero F, Honorato J, Gartner S, Álvarez A, Salcedo A, Oliver A, Gracia-Quet-glas E, Spanish Consensus Group for Antimicrobial Therapy in the Cystic Fibrosis Patient. Antimicrobial treatment against lung colonization by pseudomonas aeruginosa in the patient with cystic fibrosis. Arch Bron-coneumol. 2005; 41 Suppl 1: 1-25. doi: 10.1111/j.1469-0691.2005.01217.x
4. Campos M, Navarro R, Amuy E, Vargas A, Herrera Marco L. Bacterial isolates from the respiratory tract of children with cystic fibrosis of the pancreas. Rev méd Hosp Nac Niños (Costa Rica). 2000; 35 (1-2): 13-19.
5. Coutinho HDM, Falcao-Silva V, Fernandes Goncalves G. Pulmonary bacterial agents and antibiotic therapy in patients with cystic fibrosis: a guide for healthcare personnel. International Archives of Medicine. 2008; 1(1): 1-7. doi: 10.1186/1755-7682-1-24
6. Pollack M. Pseudomonas aeruginosa. En: Mandell GL, Bennett JE, Dolin R, eds. Principles and practice of infectious diseases. 5a ed. Nueva York: Churchill Livingstone; 2000. p. 1980-2003.
7. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrugresistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Che-mother. 2006; 50(1):43-48. doi: 10.1128/AAC.50.1.43-48.2006
8. Bergmans DC, Bonten MJ, Van Tiel FH, Gaillard CA, van der Geest S, Wilting RM, et al. Cross-colonisation with pseudo-monas aeruginosa of patients in an intensive care unit. Thorax. 1998; 53(12):1053-1058. doi:10.1136/thx.53.12.1053
9. Lynch JP. Hospital-acquired pneumonia: risk factors, microbiology, and treatment. Chest. 2001; 119(2 Suppl): 373S-384S. doi: 10.1378/chest.119.2_suppl.373s.
10. Gilligan PH. Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev.1991; 4(1): 35-51. doi: 10.1128/cmr.4.1.35
11. Martinez-Solano L, Macia MD, Fajardo A, Oliver A, Martinez JL. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin Infect Dis. 2008; 47(12): 1526-1533. doi: 10.1086/593186
12. Juan C, Macia MD, Gutiérrez O, Vidal C, Pérez JL, Oliver A. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother. 2005; 49(11): 4733-4738. doi: 10.1128/AAC.49.11.4733-4738.2005
13. Moya B, Dötsch A, Juan C, Blázquez J, Zamorano L, Haussler S, Oliver A. Beta-lactam resistance response triggered by inactivation of a non-essential penicillin-binding protein. PLoS Pathog. 2009; 5(3).1-10. doi: 10.1371/journal.ppat.1000353
14. Pedersen SS. Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. AP-MIS Suppl. 1992; 28: 1-79.
15. Souza- Días MB, Habert AB, Borrasca V, Stempliuk V, Ciolli A, Araujo MR, et al. Salvage of long-term central venous catheters during an outbreak of Pseudomonas putida and Stenotrophomonas maltophilia infections associated with contaminated heparin catheter-lock solution. Infect Control Hosp Epidemiol. 2008; 29(2): 125-30. doi: 10.1086/526440
16. Macia M, Blanquer D, Togores B, Sauleda J, Pérez JL, Oliver A. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother. 2005;49(8):3382- 3386. doi: 10.1128/AAC.49.8.3382-3386.2005
17. Oliver A, Cantón R, Campo P, Baquero F, Blazquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 2000; 288(5469): 1251-1254.doi: 10.1126/science.288.5469.1251
18. Mesaros N, Nordmann P, Plesiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, et al. Pseudomonas aerugi-nosa: resistance and therapeutics options in the turn of the new millennium. Clin Microbiol Infect. 2007; 13(6): 560-578. doi: 10.1111/j.1469-0691.2007.01681.x
19. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006; 50(5): 1633-1641. doi: 10.1128/AAC.50.5.1633-1641. 2006
20. Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plesiat P. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother. 2004; 48(5):1797–1802. doi: 10.1128/aac.48.5.1797-1802.2004
21. Lodge JM, Minchin SD, Piddock LJ, Busby JW. Cloning, sequencing, and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chro-mosomal ampC -lactamase. J Biochem. 1990; 272: 627–631. https://doi.org/10.1042/bj2720627
22. Maseda H, Sawada I, Saito K, Uchiyama H, Nakae T, No-mura N. Enhancement of the mexAB-oprM efflux pump expression by a quorum- sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Anti-microb Agents Chemother. 2004; 48(4): 1320 -1328. doi: 10.1128/aac.48.4.1320-1328.2004.
23. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci.1980; 289(1036): 321-331. doi: 10.1098/rstb.1980.0049
24. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005; 18(2): 306-325. doi: 10.1128/CMR.18.2.306-325.2005
25. Rodriguez-Martinez JM, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resis-tance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009; 53 (11): 4783-4788. doi: 10.1128/AAC.00574-09.
26. Xu J, Moore JE, Murphy PG. Millar B, Elborn J. Early detection of Pseudomonas aeruginosa. Comparison of conventional versus molecular (PCR) detection directly from adult patients with cystic fibrosis (CF). Ann Clin Microbiol Antimicrob. 2004; 20;3(1): 1-5. doi: 10.1186/1476-0711-3-21
27. Ferroni A, Sermet-Gaudelus I, Abachin E, Quesne G, Lenoir G, Berche P, et al. Use of 16S rRNA gene sequencing for identification of nonfermenting gram-negative bacilli recovered from patients attending a single cystic fibrosis center. J Clin Microbiol. 2002; 40(10): 3793-3797. doi: 10.1128/JCM.40.10.3793-3797.2002
28. Anzai Y, Kim H, Park J, Wakabayashi H, Oyaizu. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol. 2000; 50(4):1563–1589. doi: 10.1099/00207713-50-4-1563
29. LiPuma JJ, Dulaney BJ, McMenamin JD, Whitby PW, Stull TL, Coenye T, Vandamme P. Development of rRNA-based PCR assays for identification of Burkholderia cepacia complex isolates recovered from cystic fibrosis patients. J Clin Microbiol. 1999; 37(10): 3167-3170. doi:10.1128/JCM.37.10.3167-3170.1999
30. Cantóna R, Máiz L, Escribanod A, Olveirae C, Oliverb A, Asensiog O, et al. Spanish consensus for the preven-tion and treatment of bronchial infection by Pseudo-monas aeruginosa in patients with cystic fibrosis. Arch Bronconeumol. 2015; 51(3): 140-150. doi: 10.1016/j.ar-bres.2014.09.021

Downloads
Published
Issue
Section
License
Copyright (c) 2021 José Oliva-Menacho

This work is licensed under a Creative Commons Attribution 4.0 International License.