Machine learning-based classification models for  customer churn prediction in telecommunications

Authors

DOI:

https://doi.org/10.37711/repiama.2025.2.2.4

Keywords:

Customer churn prediction, Customer retention, Classification models

Abstract

 Customer loss is the key challenge in the telecommunications industry, a sector known for its intense competition and a changing user dynamic. Machine learning models have been successfully used to predict churn and improve retention approaches. This work presents a bibliometric review and a scientometric analysis of studies published during 2020 and 2025 that implement classifcation models to predict churn in
call center retention campaigns. The PRISMA methodology was applied, and the literature search covered the Scopus, IEEE Xplore, arXiv, and ScienceDirect databases. The data contents were processed using Google Colab and Python to discover trends, authors involved in the analysis, and influential algorithms. The results indicated that Random Forest, XGBoost, and Neural Networks were the most used approaches, with
performances above 90 %, and explainable artifcial intelligence was increasingly used to improve model transparency. In summary, machine learning approaches perform better than traditional methods, but some challenges remain for metric standardization and realistic applications. 

Downloads

Download data is not yet available.

References

Aria, M., & Cuccurullo, C. (2016). bibliometrix: Comprehensive Science Mapping Analysis (versión 5.1.1) [Software].

https://CRAN.R-project.org/package=bibliometrix

Bradshaw, A., Bishop, D., & Woodhead, Z. (2017). Systematic Review Protocol. https://osf.io/hyvc4

Chocobar Reyes, E. J., y Barreda Medina, R. F. (2025). Estructuras metodológicas PICO y PRISMA 2020 en la elaboración de artículos de revisión sistemática: Lo que todo investigador debe conocer y dominar. Ciencia Latina Revista Científca Multidisciplinar, 9(1), 8525-8543. https://doi.org/10.37811/cl_rcm.v9i1.16491

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview

and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070

Freire, D., Santos Mauricio Sanchez, D., Castillo Sequera, J. L., & Fiallo Moncayo, D. (2024). Factors, Predictability, and Explainability of Mobile Telephony Customer Departure in Telecommunications Companies: A Systematic Review of the Literature. IEEE Access, 12, 118968-118980. https://doi.org/10.1109/ACCESS.2024.3443318

Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or metaanalyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Research Synthesis Methods, 11(2), 181-217. https://doi.org/10.1002/jrsm.1378

Haddadi, S. J., Farshidvard, A., Silva, F. D. S., dos Reis, J. C., & da Silva Reis, M. (2024). Customer churn prediction in imbalanced datasets with resampling methods: A comparative study. Expert Systems with Applications, 246, 123086. https://doi.org/10.1016/j.eswa.2023.123086

Kolaski, K., Logan, L. R., & Ioannidis, J. P. A. (2023). Guidance to best tools and practices for systematic reviews. Acta Anaesthesiologica Scandinavica, 67(9), 1148-1177. https://doi.org/10.1111/aas.14295

Liu, X., Xia, G., Zhang, X., Ma, W., & Yu, C. (2024). Customer churn prediction model based on hybrid neural networks. Scientifc Reports, 14, 30707. https://doi.org/10.1038/s41598-024-79603-9

Moradi, B., Khalaj, M., Herat, A. T., Darigh, A., & Yamcholo, A. T. (2024). A swarm intelligence-based ensemble learning model for optimizing customer churn prediction in the telecommunications sector. AIMS Mathematics, 9(2), 2781-2807. https://doi.org/10.3934/math.2024138

Ouf, S., Mahmoud, K. T., & Abdel-Fattah, M. A. (2024). A proposed hybrid framework to improve the accuracy of customer churn prediction in telecom industry. Journal of Big Data, 11, 70. https://doi.org/10.1186/s40537-024-00922-9

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5, 210. https://doi.org/10.1186/s13643-016-0384-4

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021).

Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española

de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016

Reddy, S. A., Gowtham, M., Tripathy, K. P., & Srinivas, M. (2025). Enhanced Telecom Customer Churn Prediction Using Machine Learning and Deep Learning Models [conferencia]. 2025 International Conference on Artifcial Intelligence and Data Engineering (AIDE), Nitte, India. https://ieeexplore.ieee.org/document/10987431

Ribeiro, H., Barbosa, B., Moreira, A. C., & Rodrigues, R. G. (2024). Determinants of churn in telecommunication services: a systematic literature review. Management Review Quarterly, 74, 1327-1364. https://doi.org/10.1007/s11301-023-00335-7

Salgado-García, J. A., Terán-Bustamante, A., & VelázquezSalazar, M. (2025). Thematic mapping of artifcial intelligence in management: A bibliometric approach using co-word analysis (2015–2024). Iberoamerican Journal of Science Measurement and Communication, 5(3), 1-11. https://doi.org/10.47909/ijsmc.205

Sana, J. K., Rahman, M. S., & Rahman, M. S. (2024). PrivacyPreserving Customer Churn Prediction Model in the Context of Telecommunication Industry. arXiv:2411.01447v1 [cs. LG]. https://doi.org/10.48550/arXiv.2411.01447

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. https://doi.org/10.1016/j.jbusres.2019.07.039

Subramanian, D., Ajitha, A., & Maidin, S. S. (2025). Unveiling Hybrid Model with Naive Bayes, Deep Learning, Logistic Regression for Predicting Customer Churn and Boost Retention. Journal of Applied Data Sciences, 6(2), 1379-1391. https://doi.org/10.47738/jads.v6i2.675

Zdanavičiūtė, M., Juozaitienė, R., & Krilavičius, T. (2022). Telecommunication customer churn prediction using machine learning methods [conferencia]. IVUS 2022: 27th International Conference on Information Technology, Kaunas, Lituania. https://ceur-ws.org/Vol-3611/paper15.pdf

Downloads

Published

2025-07-09