Optimized triboelectric wind generator for energy generation on Mars: implementation strategies
DOI:
https://doi.org/10.37711/repiama.2025.2.1.4Keywords:
triboelectric generators, Mars, Martian environment, renewable energy, technology integrationAbstract
The exploration and possible colonization of Mars presents the challenge of developing energy solutions that are adapted to the planet's unique environment.In this context, triboelectric generators (TEGs) stand out as an innovative option by harnessing the soft martian breezes and operating without complex moving parts to produce electricity in low-pressure atmospheric conditions, with minimal risk of failure and reduced maintenance. The objective of this research was to advance the technological development of TEGs for application in extreme environments. This study identifies suitable areas for installation, investigates alternative materials that could improve their performance, proposes new accessories to optimize their energy production capacity, and explores their use as a complement to renewable energy sources on Mars. The implementation of these generators could have immediate applications in future Mars missions and thus lay the groundwork for the development of adaptive energy technologies in extraterrestrial environments
Downloads
References
Amo, I. P. (2007). Wind as alternative energy resource for future Mars exploration [conferencia]. En Proceedings of the 58th International Astronautical Congress 2007 (p. 5603). International Astronautical Federation.
Bai, P., Zhu, G., Liu, Y., Chen, J., Jing, Q., Yang, W., Ma, J., Zhang, G., & Wang, Z. L. (2013). Cylindrical rotating triboelectric nanogenerator. ACS Nano, 7(7), 6361–6366. https://doi.org/10.1021/nn402491y
Bertels, C. (2006, junio). Crew maintenance lessons learned from ISS and considerations for future manned missions [conferencia]. En Proceedings of the SpaceOps 2006 Conference – 9th International Conference on Space Operations. American Institute of Aeronautics and Astronautics. Roma, Italia.
Bramanti, C., Izzo, D., Walker, R., & Fearn, D. G. (2007). Mars cargo transportation systems enabled by the dual-stage 4-grid ion thruster concept [conferencia]. En Proceedings of the 58th International Astronautical Congress 2007 (Vol. 11, pp. 7128-7129). International Astronautical Federation.
Haberle, R. M. (2015). Solar system/Sun, atmospheres, evolution of atmospheres: Planetary atmospheres: Mars. En G. R. North, J. Pyle, & F. Zhang (Eds.), Encyclopedia of atmospheric sciences (2.ª ed.) (pp. 168-177). Elsevier. https://doi.org/10.1016/B978-0-12-382225-3.00312-1
Hiremath, A. R., Mendonca, N., Salokhe, S. A., Prem, A., & Singh, S. (2023). Multifluid geothermal energy generation on Mars in the sedimentary regions utilizing indigenous resources of the planet [conferencia]. En Proceedings of the 74th International Astronautical Congress, IAC 2023. International Astronautical Federation.
Kim, W., Bhatia, D., Jeong, S., & Choi, D. (2019). Mechanical energy conversion systems for triboelectric nanogenerators: Kinematic and vibrational designs. Nano Energy, 56, 307-321. https://doi.org/10.1016/j.nanoen.2018.11.056
Landis, G. A., Kerslake, T. W., Jenkins, P., & Scheiman, D. (2004). Mars solar power [conferencia]. En Proceedings of the 2nd International Energy Conversion Engineering Conference(Vol. 1) (pp. 376-385). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2004-5555
Li, H., Wen, J., Ou, Z., Su, E., Xing, F., Yang, Y., Sun, Y., Wang, Z. L., & Chen, B. (2023). Leaf-like TENGs for harvesting gentle wind energy at an air velocity as low as 0.2 m s-¹. Advanced Functional Materials, 33(11), Article 2212207. https://doi.org/10.1002/adfm.202212207
Biswal, M. M. K., & Annavarapu, R. N. (2021). Design of in-situ flywheel generator and energy storage system for enhanced power production on Mars. AIAA Propulsion and Energy Forum, 2021, Article AIAA 2021-3342. https://doi.org/10.2514/6.2021-3342
Biswal, M. M. K., & Kumar, V. R. (2021). Power options for human Mars mission (AIAA 2021-3260). AIAA Propulsion and Energy Forum, 2021. https://doi.org/10.2514/6.2021-3260
Mars Climate Database: The Web Interface. (s. f.). https://goo.su/3gbJR
National Aeronautics and Space Administration. (2013, 29 de agosto). NASA’s Mars landing sites, including InSight. NASA Science. https://science.nasa.gov/resource/nasas-mars-landing-sites-including-insight/
Ouroumova, L., Witte, D., Klootwijk, B., Terwindt, E., van Marion, F., Mordasov, D., Corte Vargas, F., Heidweiller, S., Géczi, M., Kempers, M., & Schmehl, R. (2021). Combined airborne wind and photovoltaic energy system for Martian habitats. Spool, 8(2), 71-85. https://doi.org/10.7480/spool.2021.2.6058
Pozo, B., Quintana, I., Ryszawa, E., Muñoz, I., Galliard, L., & de Gorostiza, E. F. (2022, mayo). First steps to develop a triboelectric wind turbine for Mars exploration. In 46th Aerospace Mechanisms Symposium (p. 261).
Pozo, B., Ryszawa, E., Quintana, I., Muñoz, I., Arizaga, I., & Galliard, L. (s. f.). Triboelectric wind turbine for Mars exploration. Tekniker / ESA-ESTEC.
Redacción. (2020, 9 de diciembre). El centro de investigación vasco Tekniker llevará la energía eólica a Marte. El Periódico de la Energía. https://elperiodicodelaenergia.com/el-centro-de-investigacion-vasco-tekniker-llevara-la-energia-eolica-a-marte/
Seol, M.-L., Han, J.-W., Moon, D.-I., & Meyyappan, M. (2017). Triboelectric nanogenerator for Mars environment. Nano Energy, 39, 238–244. https://doi.org/10.1016/j.nanoen.2017.07.004
Sharma, G., Gautam, J., & Gurusideswar, S. (2021). Material selection and its characterization for Mars environment and a study on full field strain analysis [conferencia]. AIP Conference Proceedings, 2317, 020045. https://doi.org/10.1063/5.0036265
Shumaker, B. D., McCulley, J. R., & Hashemian, H. M. (2013). Autonomous I&C health monitoring and diagnostics for fission power systems. Nuclear and Emerging Technologies for Space, NETS 2013, 541–550.
Wang, L., & Balog, R. S. (2024). Martian energy system design considerations [conferencia]. En 2024 IEEE Texas Power and Energy Conference (TPEC 2024). IEEE. https://doi.org/10.1109/TPEC60005.2024.10472284

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rivaldo Carlo Duran-Aquino (Autor/a)

This work is licensed under a Creative Commons Attribution 4.0 International License.