Uso de fibra de aguja de pino para mejorar las propiedades mecánicas del hormigón: una revisión sistemática
DOI:
https://doi.org/10.37711/repiama.2024.1.1.6Resumen
Objetivo. Realizar una revisión sistemática sobre la fibra de agujas pino agregadas para mejorar las propiedades mecánicas del hormigón. Métodos. Se aplicó una revisión sistemática de 80 artículos distribuidos en las bases de datos indexadas de la siguiente manera: 15 de Scopus, 30 de ProQuest, 11 de EBSCO, y 24 ScienceDirect, donde se encontraron 32 artículos del 2017 al 2019 y 48 artículos del 2020 al 2022. Desarrollo. Para la búsqueda de los artículos fueron usadas las siguientes palabras clave: fibras de pino, influencia de la fibra de pino, propiedades del concreto con fibra, uso de la fibra de pino. Se tiene como resultado que usando el 25 % y 50 % de fibras de pino mejora las propiedades mecánicas del concreto, aumenta-do un 12,6 % y 15,60 % de la resistencia a la compresión del hormigón. Conclusión. Se concluye que usar fibra de pino en el concreto puede aumentar la resistencia a la compresión como también puede aumentar su ductilidad y tenacidad, entre otras propiedades mecánicas
Descargas
Referencias
Abdelsamie, K., Agwa, I. S., Tayeh, B. A., & Hafez, R. D. (2021). Improving the brittle behaviour of high-strength concrete using keratin and glass fibres(Article). Advances in Concrete Construction, 12(6), 469-477. doi: 10.12989/acc.2021.12.6.469Ahmed Shaikh, F. U. (2017). Mechanical and durability prop-erties of fly ash geopolymer concrete containing recycled coarse aggregates. International Journal of Sustainable Built Environment, 5(2), 277-287. https://doi.org/10.1016/j.ijsbe.2016.05.009Ahmed, H. U., Rabar, F. H., Hilal, N., Mohammed, A. A., & Sherwani, A. H. (2021). Use of recycled fibers in concrete composites: A systematic comprehensive review. Com-posites Part B: Engineering, 215, 108769. doi: https://doi.org/10.1016/j.compositesb.2021.108769Ahn, Y., Gook Jang, J., & H.K, L. (2017). Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures. Cement and Concrete Compos-ites, 72, 27-38. doi: 10.1016/j.cemconcomp.2016.05.028Alvarez, N., Gutierrez, J., Duran, G., & Pacheco, L. (2020). Ex-perimental study of the mechanical effect of a clayey soil by adding rubber powder for geotechnical applications. Materials Science and Engineering, 758, 012057. doi: 10.1088/1757-899X/758/1/012057Amin, M., Zeyad, A. M., Tayeh, B. A., & Saad Agwa, I. (2022). Ef-fect of ferrosilicon and silica fume on mechanical, durabil-ity, and microstructure characteristics of ultra high-perfor-mance concrete. Construction and Building Materials, 320, 126233. doi: 10.1016/j.conbuildmat.2021.126233Bin Young, W., & Kai Huang, J. (2019). The mechanical, hy-gral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Composites Part B: Engi-neering, 166, 272-283. https://doi.org/10.1016/j.compos-itesb.2018.12.013
Coutts, R. S. (2017). A review of Australian research into natu-ral fibre cement composites. Cement and Concrete Com-posites, 27(5), 518-526. https://doi.org/10.1016/j.cemcon-comp.2004.09.003
Eisa, A. S., Elshazli, M. T., & Nawar, M. T. (2020). Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams. Construction and Building Materials, 252, 119078. https://doi.org/10.1016/j.conbuildmat.2020.119078
Huyen, B., Nassim , S., Mohamed , B., & Levacher , D. (2020). Determination and Review of Physical and Mechanical Properties of Raw and Treated Coconut Fibers for Their Recycling in Construction Materials. Cementitious Com-posites Reinforced with Recycled and Natural Fibers, 8(6), 3-10. https://doi.org/10.3390/fib8060037
Junwei, Z., Zhe, Y., Shijie, L., & Hongjian, P. (2022). Investi-gation onmechanical property adjustment of multi-scale hybrid fiber-reinforced concrete. Case Studies in Con-struction Materials, 16, e01076. https://doi.org/10.1016/j.cscm.2022.e01076
Krayushkina, K., Khymeryk, T., & Bieliatynskyi, A. (2019). Basalt fiber concrete as a new construction. Materials Sci-ence and Engineering, 708, 012088. doi: 10.1088/1757-899X/708/1/012088
Kuqo, A., & Mai, C. (2021). Mechanical properties of lightweight gypsum composites comprised of seagrass Posidonia oceanica and pine (Pinus sylvestris) wood fibers. Con-struction and Building Materials, 282, 122714. https://doi.org/10.1016/j.conbuildmat.2021.122714
Libre, N. A., Shekarchi, M., Mahoutian, M., & Soroushian, P. (2017). Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction and Building Materials, 25(5), 2458-2464. doi: 10.1016/j.conbuildmat.2010.11.058Mejia
Ballesteros, J. E., Santos, V., Mármol, G., Frías, M., & Fiorelli , J. (2017). Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. scientific documents at your fingertips, 24, 2275–2286. https://doi.org/10.1007/s10570-017-1253-6
Meng, C., Li, W., Cai, L., Shi, X., & Jiang, C. (2020). Experimen-tal research on durability of high-performance synthetic fi-bers reinforced concrete: Resistance to sulfate attack and freezing-thawing. Construction and Building Materials, 262, 120055. doi: 10.1016/j.conbuildmat.2020.120055
Mengual, A., Juárez, D., Balart, R., & Ferrándiz, S. (2017). Mechanical characterization of composite materials based on pine needle residues processed by thermocompres-sion. Procedia Manufacturing, 13, 315-320. https://doi.org/10.1016/j.promfg.2017.09.081
Merta, I., & schegg, E. (2015). Fracture energy of natural fibre re-inforced concrete. Construction and Building Materials, 14, 991-997. https://doi.org/10.1016/j.conbuildmat.2012.11.060
Meza, A., & Siddique, S. (2019). Effect of aspect ratio and dos-age on the flexural response of FRC with recycled fiber. Construction and Building Materials, 213, 286-291. https://doi.org/10.1016/j.conbuildmat.2019.04.081
Mustafa, C. (2022). Investigation of mechanical properties of red pine needle fiber reinforced self-compacting ultra high performance concrete. Case Studies in Construction Mate-rials, 16. https://doi.org/10.1016/j.cscm.2022.e00970
Nematzadeh, M., Karimi, A., & Valukolaee, S. F. (2020). Com-pressive performance of steel fiber-reinforced rubberized concrete core detached from heated CFST. Construc-tion and Building Materials, 239, 117832. https://doi.org/10.1016/j.conbuildmat.2019.117832
Oraimi, S., & Seibi, A. (2017). Mechanical characterisation and impact behaviour of concrete reinforced with natu-ral fibres. Composite Structures, 32, 165-171. https://doi.org/10.1016/0263-8223(95)00043-7
Paricaguán, B. M., Albano, C. L., Torres, R. V., Camacho, N., Infante, J., & Muñoz, J. L. (2017). Efecto de las fibras de coco sobre la resistencia a la flexión de mezclas de hormigón. Materiales clave de ingeniería, 88(4), 424-4. https://dialnet.unirioja.es/servlet/articulo?codigo=4434557
Prakash, R., Thenmozhi, R., Raman, S., & Subramanian, C. (2020). Characterization of ecofriendly steel fiber-rein-forced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement.Faculty of Engineering and Built Environment, 21(1), 437-447. doi: 10.1002/suco.201800355
Rabiaa, E., Mohamed, R., Sofi, W., & Tawfik, T. A. (2020). Developing Geopolymer Concrete Properties by Us-ing Nanomaterials and Steel Fibers. Advances in Materials Science and Engineering, 5186091. https://doi.org/10.1155/2020/5186091
Ryu, E., Kim, H., Chun, Y., & Yeo, H. (2020). Effect of heated areas on thermal response and structural behavior of re-inforced concrete walls exposed to fire. Engineering Struc-tures, 207, 110165. doi: 10.1016/j.engstruct.2020.110165
Sandeep, G., Somit , G., Hitesh , S., Rakesh, & Kumar, P. (2019). Impact behavior of pine needle fiber/pistachio shell filler based epoxy composite. Journal of Physics, 1240(1), 012096. doi: 10.1088/1742-6596/1240/1/012096
Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2017). Applications of Natural Fibers and Its Com-posites: An Overview. Scientific Research An Academic Pub-lisher, 7(3), 108-114. http://dx.doi.org/10.4236/nr.2016.73011
Sanjeev , J., & Nitesh , S. (2020). Study on the effect of steel and glass fibers on fresh and hardened properties of vi-brated concrete and self-compacting concrete. Weight Materials and Structures, 27, 1559 - 1568. doi: 10.1016/j.matpr.2020.03.208
Sanjeev, J., & Sai Nitesh, K. J. (2019). Study on the effect of steel and glass fibers on fresh and hardened properties of vibrated concrete and self-compacting concrete. Mate-rials Today: Proceedings, 27, 1559-1568. doi: 10.1016/j.matpr.2020.03.208
Saravanan, N., & Buvaneshwari, M. (2018). Experimental In-vestigation on Behaviour of Natural Fibre Concrete (Sisal Fibre). International Journal of Scientific Research & Engi-neering Trends, 4(3), 2395-566. https://ijsret.com/wp-con-tent/uploads/2018/05/IJSRET_V4_issue3_253.pdf
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Flor Liliana del Rocío Llenque Galán (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.


