Sample size and precision calculation for epidemiological studies: development and implementation of the Calculadora Prevalencia, an R package

Authors

  • Víctor Juan Vera-Ponce Universidad Nacional Toribio Rodriguez de Mendoza
  • Fiorella E. Zuzunaga-Montoya Universidad Continental
  • Christian Humberto Huaman-Vega Universidad Nacional Toribio Rodriguez de Mendoza
  • Nataly Mayely Sanchez-Tamay Universidad Nacional Toribio Rodriguez de Mendoza
  • Carmen Inés Gutierrez de Carrillo Universidad Nacional Toribio Rodriguez de Mendoza

DOI:

https://doi.org/10.37711/

Keywords:

samplingling , sample size, stratifed sampling, random sampling, systematic samp

Abstract

Determining sample size and assessing precision are essential components of epidemiological research. This article presents Calculadora Prevalencia, an R-based tool designed to facilitate these calculations by incorporating both methodological and logistical factors. The calculator supports various scenarios, including finite and infinite populations, stratifed sampling, and adjustments for instrument sensitivity and specificity. Its utility is demonstrated through practical examples across diverse contexts: infinite urban populations, finite rural populations, stratifed university sampling, and the analysis of existing datasets. The tool also addresses
logistical considerations, estimating the number of subjects to contact based on rejection and eligibility rates, and projecting expected feldwork duration. Its versatility enables both prospective planning and retrospective data evaluation, while the innovative inclusion of logistical components offers a realistic perspective on the resources needed to carry out
successful epidemiological studies. 

Downloads

Download data is not yet available.

References

1. Mascha EJ, Vetter TR. Signifcance, Errors, Power, and Sample Size: The Blocking and Tackling of Statistics. Anesth Analg. [Internet]. 2018 [Consultado el 12 de marzo de 2025];126(2):691-8. doi:10.1213/ANE.0000000000002741

2. Andrade C. Sample Size and its Importance in Research. Indian J Psychol Med. [Internet]. 2020 [Consultado el 12 de marzo de 2025]; 42(1):102-3. doi:10.4103/IJPSYM.IJPSYM_504_19

3. Chow S-C, Shao J, Wang H, Lokhnygina Y. Sample Size Calculations in Clinical Research [Internet]. tercera edición. New York: Chapman and Hall/CRC; 2017 [Consultado el 12 de marzo de 2025]. doi:10.1201/9781315183084

4. Rao UK. Concepts in sample size determination. Indian J Dent Res [Internet]. 2012 [Consultado el 12 de marzo de 2025];23(5):660-4. doi:10.4103/0970-9290.107385

5. Dattalo P. Determining Sample Size [Internet]. Oxford University Press; 2008 [Consultado el 3 de noviembre de 2024]. doi:10.1093/acprof:oso/9780195315493.001.0001

6. Wang X, Ji X. Sample Size Estimation in Clinical Research: From Randomized Controlled Trials to Observational Studies. Chest. [Internet]. 2020 [Consultado el 3 de noviembre de 2024];158(1S):S12-20. doi:10.1016/j.chest.2020.03.010

7. Case LD, Ambrosius WT. Power and sample size. Methods Mol Biol. [Internet]. 2007 [Consultado el 3 de noviembre de 2024];404:377-408. doi:10.1007/978-1-59745-530-5_19

8. Charan J, Biswas T. How to calculate sample size for different study designs in medical research? Indian J Psychol Med. [Internet]. 2013 [Consultado el 3 de noviembre de 2024];35(2):121-6. doi:10.4103/0253-7176.116232

9. Population Correction Factor - an overview | ScienceDirect Topics [Internet]. [Consultado el 3 de noviembre de 2024]. Disponible en: https://www.sciencedirect.com/topics/mathematics/population-correction-factor

10. Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform. [Internet].2014 [Consultado el 3 de noviembre de 2024];48:193-204. doi:10.1016/j.jbi.2014.02.013

11. Lohr SL. Sampling: design and analysis. 2ª ed. Boston: Mass: Brooks/Cole; 2010.

12. Kelley K. Sample size planning for the coeffcient of variation from the accuracy in parameter estimation approach. Behav Res Methods [Internet]. 2007 [Consultado el 3 de noviembre de 2024];39(4):755-66. doi:10.3758/BF03192966

13. Jones SR, Carley S, Harrison M. An introduction to power and sample size estimation. Emerg Med J. [Internet]. 2003 [Consultado el 3 de noviembre de 2024];20(5):453-8. doi:10.1136/emj.20.5.453

14. Das S, Mitra K, Mandal M. Sample size calculation: Basic principles. Indian J Anaesth. [Internet]. 2016 [Consultado el 3 de noviembre de 2024];60(9):652-6. doi:10.4103/0019-5049.190621

15. Anastasi JK, Capili B, Norton M, McMahon DJ, Marder K. Recruitment and retention of clinical trial participants: understanding motivations of patients with chronic pain and other populations. Frontiers in Pain Research [Internet]. 2024 [Consultado el 3 de noviembre de 2024];4:1330937. doi:10.3389/fpain.2023.1330937

16. Smith PG, Morrow RH, Ross DA. Field Trials of Health Interventions [Internet]. 3ª ed. Oxford: OUP Oxford; 2015 [Consultado el 3 de noviembre de 2024]. Disponible en: http://www.ncbi.nlm.nih.gov/books/NBK305515/

Downloads

Published

2025-04-10

How to Cite

1.
Vera-Ponce VJ, Zuzunaga-Montoya FE, Huaman-Vega CH, Sanchez-Tamay NM, Gutierrez de Carrillo CI. Sample size and precision calculation for epidemiological studies: development and implementation of the Calculadora Prevalencia, an R package. Rev Peru Cienc Salud [Internet]. 2025 Apr. 10 [cited 2025 Jun. 7];7(2). Available from: https://revistas.udh.edu.pe/index.php/RPCS/article/view/676

Similar Articles

1-10 of 214

You may also start an advanced similarity search for this article.