Governance and ethical challenges in the business adoption of the artificial intelligence

Authors

DOI:

https://doi.org/10.37711/rcie.2024.4.2.633

Keywords:

artificial intelligence, ethical, government, international cooperation, technological change

Abstract

This work explores how artificial intelligence (AI) impacts business management to international level, examining equity, governance and ethical challenges that govern and ethical challenges that carry its adoption. It also highlights how regulatory fragmentation between different regions, such
as the European Union, the United States and China, makes it difcult to create coherent models of governance and increases uncertainty in the
operations. In addition, ethical dilemmas such as algorithmic biases and the tension between the privacy of the users and the personalization of the
services. It examines strategies of leading  companies, such as conducting algorithmic audits and establishing transparency policies, that seek to build public trust and enhance corporate reputation. However, obstacles such as lack of specialized talent and internal organizational resistance hinder the
adoption of sustainable ethical practices. Finally, this analysis suggests that companies that invest in adaptive governance frameworks and collaborate
with governments and private actors will be better prepared to meet the evolving challenges of AI and compete in the global marketplace.

Downloads

Download data is not yet available.

References

Akter, S., Uddin, M. R., Sajib, S., Lee, W. J. T., Michael, K., & Hossain, M. A. (2022). Reconceptualizing cybersecurity awareness

capability in the data-driven digital economy. Annals of Operations Research. https://doi.org/10.1007/s10479-022-

-9

Andrade, C., y Goncalo, C. (2021). Transformación digita habilitando capacidades estratégicas en el contexto de los

“BRICS”. Revista de Gestao, 28(4), 297-315. https://doi.org/10.1108/REGE-12-2020-0154

Ayling, J., & Chapman, A. (2022). Putting AI ethics to work: are the tools ft for purpose? AI and Ethics, 2, 405-429. https://doi.org/10.1007/s43681-021-00084-x

Bahcecik, S. O. (2023). I TRENDS Security Politics and Artifcial Intelligence: Key Trends and Debates. International

Political Science Abstracts, 73(3), 329-338. https://doi.org/10.1177/00208345231182638

Barocas, S., Hardt, M., & Narayanan, A. (2023). Fairness and machine learning: Limitations and opportunities. MIT Press.

Beulen, E., Plugge, A., & van Hillegersberg, J. (2022). Formal and relational governance of artifcial intelligence outsourcing.

Information Systems and e-Business Management, 20, 719–748. https://doi.org/10.1007/s10257-022-00560-4

Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy. Proceedings of the 2018 Conference on

Fairness, Accountability, and Transparency, 149-159. https://doi.org/10.48550/arXiv.1712.03586

Birkstedt, T., Minkkinen, M., Tandon, A., y Mantymaki, M. (2023). Gobernanza de IA: temas, lagunas de conocimiento y futuras agendas. Internet Research, 33(7), 133-167. https://doi.org/10.1108/INTR-01-2022-0042

Booth, A., Sutton, A., & Papaioannou, D. (2016). Systematic Approaches to a Successful Literature Review (2nd ed.). SAGE

Publications.

Brock, J. M., & Wangenheim, F. (2019, Summer). Demystifying AI: What digital transformation leaders can teach you about

realistic artifcial intelligence. Business Horizons, 62(6), 751-758. https://tinyurl.com/ycyjadnr

Calmon Santos de Souza, M., & Silva de Souza, R. (2023). Law enforcement, social demands and reputation risks as drivers

of compliance functions: A comparative analysis of the largest banks’ disclosures in the UK and Brazil. Crime, Law and Social Change, 81(4), 255-280. https://doi.org/10.1007/s10611-023-10116-8

Chen, Z. (2023). Ethics and discrimination in artifcial intelligenceenabled recruitment practices. Humanities and Social Sciences Communications, 10(1), 567. https://doi.org/10.1057/s41599-023-02044-8

Cihon, P., Maas, M. M., & Kemp, L. (2020, November). Fragmentation and the future: Investigating architectures for international AI governance. Global Policy, 11(5), 545-556. https://doi.org/10.1111/1758-5899.12890

Cowgill, B., DellAcqua, F., & Matz, S. (2020. May). The Managerial Effects of Algorithmic Fairness Activism. AEA Papers and

Proceedings, 110, 85-90. https://tinyurl.com/3txk3cxw

Cupac, J., & Sienknecht, M. (2024). Regulate against the machine: How the EU mitigates AI harm to democracy. Democratization, 31(5), 1067-1090. https://doi.org/10.1080/13510347.2024.2353706

De Laat, P. (2021). Companies committed to responsible AI: From principles towards implementation and regulation? Philosophy y Technology, 34, 1135-1193. https://doi.org/10.1007/s13347-021-00474-3

Díaz-Rodríguez, N., Del Ser, J., Coeckelbergh, M., López de Prado, M., Herrera-Viedma, E., & Herrera, F. (2023, November).

Connecting the dots in trustworthy Artifcial Intelligence: From AI principles, ethics, and key requirements to responsible AI

systems and regulation. Information Fusion, 99, 101896. https://doi.org/10.1016/j.inffus.2023.101896

Dickhaut, E., Li, M. M., Janson, A., & Leimeister, J. M. (2022). The role of design patterns in the development and legal

assessment of lawful technologies. Electronic Markets, 32, 2311-2331. https://doi.org/10.1007/s12525-022-00500-9

Ding, J. (2018, marzo). Deciphering Chinas AI dream: The context, components, capabilities, and consequences of Chinas

strategy to lead the world in IA. Future of Humanity Institute, University of Oxford. https://tinyurl.com/32emxrsd

Dignum, V. (2019). Responsible artificial intelligence: How to develop and use AI in a responsible way. Springer. https://doi.

org/10.1007/978-3-030-30371-6

Drage, E., & Mackereth, K. (2022). Does AI debias recruitment? Race, gender, and AIs “eradication of difference.” Philosophy

y Technology, 35(89). https://doi.org/10.1007/s13347-022-00591-w

Erdélyi, O. J., & Goldsmith, J. (2022). Regulating artifcial intelligence: Proposal for a global solution. Government Information Quarterly, 39(4), 101748. https://doi.org/10.1016/j.giq.2022.101748

Espinoza, J. (2024, 15 de julio). Europes rushed attempt to set the rules for AI. Financial Times. https://tinyurl.com/2p99jjs2

European Commission. (2021). Proposal for a regulation laying down harmonised rules on artificial intelligence (Artifcial

Intelligence Act). https://tinyurl.com/343v7hsa European Union. (2016, 27 de abril). Regulation (EU) 2016/679.

On the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENGytoc=OJ:L:2016:119:FULL#d1e1384-1-1

Fjeld, J., Achten, N., Hilligoss, H., Nagy, A., & Srikumar, M. (2020). Principled artificial intelligence: Mapping consensus in ethical and rights-based approaches to principles for AI. Berkman Klein Center Research Publication. https://doi.org/10.2139/ssrn.3518482

Floridi, L. (2021). Ethics, governance, and policies in artificial intelligence: A road to maturity. Springer Verlag.

Frank, D.-A., Jacobsen, L.F., Sondergaard, H.A., & Otterbring, T. (2023). In companies we trust: Consumer adoption of artificial intelligence services and the role of trust in companies and AI autonomy. Information Technology y People, 36(8), 155-173. https://doi.org/10.1108/ITP-09-2022-0721

Floridi, L., & Cowls, J. (2019). A unifed framework of fve principles for AI in society. Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.8cd550d1

Gardner, A., Smith, A. L., Steventon, A., Coughlan, E., & Oldfeld, M. (2022). Ethical funding for trustworthy AI: proposals to

address the responsibilities of funders to ensure that projects adhere to trustworthy AI practice. AI and Ethics, 2, 277-291.

https://doi.org/10.1007/s43681-021-00069-w

Gauthier, M. P., & Brender, N. (2021). ¿Cómo se ajustan los estándares de auditoría actuales al uso emergente de

blockchain? Managerial Auditing Journal, 36(3), 365-385. https://doi.org/10.1108/MAJ-12-2019-2513

Gerards, J. (2022). The fundamental rights challenges of algorithms. Netherlands Quarterly of Human Rights, 37(3),

-209. https://doi.org/10.1177/0924051919861773

Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). Artifcial intelligence (AI) applications for marketing: A literaturebased study. International Journal of Intelligent Networks, 3, 119-132. https://doi.org/10.1016/j.ijin.2022.08.005

Hilb, M. (2020). Toward artifcial governance? The role of artificial intelligence in shaping the future of corporate governance. Journal of Management and Governance, 24, 851-870. https://doi.org/10.1007/s10997-020-09516-7

Howard, A., & Borenstein, J. (2018). The ugly truth about ourselves and our robot creations: The problem of bias and social

inequity. Science and Engineering Ethics, 24(5), 1521-1536. https://doi.org/10.1007/s11948-017-9975-2

Isaak, J., & Hanna, M. J. (2018). User data privacy: Facebook, Cambridge Analytica, and privacy protection. Computer, 51(8), 56-59. https://doi.org/10.1109/MC.2018.3191268

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. https://doi.org/10.1038/s42256-019-0088-2

Kalkan, G. (2024). The Impact of Artifcial Intelligence on Corporate Governance. Journal of Corporate Finance

Research 18(2), 17-25. https://doi.org/10.17323/j.jcfr.2073-0438.18.2.2024.17-25

Koskinen, J., Knaapi-Junnila, S., Helin, A., Rantanen, M.M., & Hyrynsalmi, S. (2023). Ethical governance model for the

data economy ecosystems. Digital Policy, Regulation and Governance, 25(3), 221-235. https://doi.org/10.1108/DPRG-

-2022-0005

Luk, A. (2024). The relationship between law and technology: comparing legal responses to creators’ rights under copyright

law through safe harbour for online intermediaries and generative AI technology. Law, Innovation and Technology, 16(1), 148-169. https://doi.org/10.1080/17579961.2024.2313800

Lappi, T. M., Aaltonen, K., & Kujala, J. (2019). Project governance and portfolio management in government digitalization.

Transforming Government: People, Process and Policy, 13(2), 159-196. https://doi.org/10.1108/TG-11-2018-0068

Masur, P. K., & Trepte, S. (2021). Transformative or not? How privacy violation experiences influence online privacy concerns

and online information disclosure. Human Communication Research, 47(1), 49–74. https://doi.org/10.1093/hcr/hqaa012

Mennella, C., Maniscalco, U., De Pietro, G., & Esposito, M. (2024). Ethical and regulatory challenges of AI technologies in

healthcare: A narrative review. Heliyon, 10(4), e26297. https://doi.org/10.1016/j.heliyon.2024.e26297

Metcalf, J., Moss, E., & Boyd, D. (2019). Owning ethics: Corporate logics, Silicon Valley, and the institutionalization of ethics.

Social Research: An International Quarterly, 82(2), 449-476. https://muse.jhu.edu/article/732185

Mozur, P., Kessel, J. M., & Chan, M. (2019). Made in China, exported to the world: The surveillance state. The New York Times. https://tinyurl.com/2dxtv5c8

Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2020). From what to how: An initial review of publicly available AI ethics tools,

methods, and research to translate principles into practices. Science and Engineering Ethics, 26, 2141-2168. https://doi.

org/10.1007/s11948-019-00165-5

Mucha, T., Ma, S., & Abhari, K. (2023). Riding a bicycle while building its wheels: The process of machine learning-based

capability development and IT-business alignment practices. Internet Research, 33(7), 168-205. https://doi.org/10.1108/

INTR-10-2022-0769 National Institute of Standards and Technology (NIST). (2024). Artifcial intelligence risk management framework: Generative artifcial intelligence profile (NIST AI 600-1). U.S. Department of Commerce. https://doi.org/10.6028/NIST.AI.600-1

Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. NYU Press. https://tinyurl.com/56ex47f5

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the

health of populations. Science, 366(6464), 447-453. https://doi.org/10.1126/science.aax2342

Park, E. (2023). The AI Bill of Rights: A step in the right direction. Orange County Lawyer Magazine, 65(2), 25. https://ssrn.com/abstract=4351423

Pfilanzer, M., Dubljevic, V., Bauer, W. A., Orcutt, D., List, G., & Singh, M. P. (2023). Embedding AI in society: ethics, policy, governance, and impacts. AI y Society, 38, 1267-1271. https://doi.org/10.1007/s00146-023-01704-2

Papagiannidis, E., Enholm, I. M., Dremel, C., Mikalef, P., & Krogstie, J. (2022). Toward AI Governance: Identifying Best Practices and Potential Barriers and Outcomes. Information Systems Frontiers, 25, 123-141. https://doi.org/10.1007/s10796-022-10210-1

Rahwan, I. (2018). Society-in-the-loop: Programming the algorithmic social contract. Ethics and Information Technology,

, 5-14. https://doi.org/10.1007/s10676-017-9430-8

Raji, I. D., Smart, A., White, R. N., Mitchell, M., Gebru, T., Hutchinson, B., Smith-Loud, J., Theron, D., & Barnes, P. (2020). Closing the AI accountability gap: Defining an end-to-end framework for internal algorithmic auditing. In FAT ‘20: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 33-44). Association for Computing

Machinery. https://doi.org/10.1145/3351095.3372873

Rana, G., Khang, A., Sharma, R., Kumar, A. l., & Kumar, A. S. (2022). Reinventing Manufacturing and Business Processes Through Artifcial Intelligence. CRC Press.

Rasool, F., Greco, M., Morales-Alonso, G., & Carrasco-Gallego, R. (2023). What is next? The effect of reverse logistics adoption on digitalization and inter-organizational collaboration. International Journal of Physical Distribution y Logistics

Management, 53(5/6), 563-588. https://doi.org/10.1108/IJPDLM-06-2022-0173

Roberts, H., Cowls, J., Hine, E., Morley, J., Wang, V., Taddeo, M., & Floridi, L. (2023). Governing artifcial intelligence in China and the European Union: Comparing aims and promoting ethical outcomes. The Information Society, 39(2), 79-97. https://doi.org/10.1080/01972243.2022.2124565

Roberts, H., Cowls, J., Morley, J., Taddeo, M., Wang, V., & Floridi, L. (2021). The Chinese approach to artifcial intelligence: An

analysis of policy, ethics, and regulation. AI y Society, 36(1), 59-77. https://doi.org/10.1007/s00146-020-00992-2

Ryan, M., & Stahl, B. C. (2021). Artifcial intelligence ethics guidelines for developers and users: clarifying their content

and normative implications. Journal of Information, Communication and Ethics in Society, 19(1), 61-86. https://doi.org/10.1108/JICES-12-2019-0138

Saheb, T., & Saheb, T. (2024). Mapping Ethical Artifcial Intelligence Policy Landscape: A Mixed Method Analysis. Science and

engineering ethics, 30(2), 9. https://doi.org/10.1007/s11948-024-00472-6

Salo-Pontinen, H., & Saariluoma, P. (2022). Reflections on the human role in AI policy formulations: how do national AI

strategies view people? Discov Artifcial Intelligence, 2(3). https://doi.org/10.1007/s44163-022-00019-3

Schinagl, S., & Shahim, A. (2020). What do we know about information security governance? “From the basement to the boardroom”: towards digital security governance. Information and Computer Security, 28(2), 261-292. https://doi.org/10.1108/ICS-02-2019-0033

Selbst, A. D., Boyd, D., Friedler, S. A., Venkatasubramanian, S., & Vertesi, J. (2019). Fairness and abstraction in

sociotechnical systems. In FAT ‘19: Proceedings of the Conference on Fairness, Accountability, and Transparency

(pp. 59-68). Association for Computing Machinery. https://doi.org/10.1145/3287560.3287598

Shneiderman, B. (2022). Human-centered AI. Oxford University Press. https://tinyurl.com/3k6dpzad Simbar, R., & Moghadam Lakani, S. F. (2022). Changes in the balance of international power in the light of Chinas artifcial

intelligence. Journal of World Sociopolitical Studies, 36, 59-77. https://doi.org/10.22059/wsps.2022.336553.1268

Taeihagh, A. (2021). Governance of artifcial intelligence. Policy and Society, 40(2), 137-157. https://doi.org/10.1080/14494

2021.1928377 Van Veldhoven, Z., & Vanthienen, J. (2021). Digital transformation as an interaction-driven perspective between business, society, and technology. Electronic Markets, 32, 629-644. https://doi.org/10.1007/s12525-021-00469-0

Van Veldhoven, Z., & Vanthienen, J. (2023). The role of trade associations in the digital transformation of their industry.

Digital Transformation and Society, 2(3), 235-256. https://doi.org/10.1108/DTS-11-2022-0058

Verheij, B. (2020). Artifcial intelligence as law. Artifcial Intelligence and Law, 28(2), 181-206. https://doi.org/10.1007/s10506-

-09266-0

Veale, M., & Zuiderveen, F. (2021). Demystifying the Draft EU Artifcial Intelligence Act-Analysing the good, the bad, and the

unclear elements of the proposed approach. Computer Law Review International, 22(4), 97-112. https://doi.org/10.9785/

cri-2021-220402

Vesnic-Alujevic, L., Nascimento, S., & Pólvora, A. (2020). Societal and ethical impacts of artifcial intelligence: Critical notes on

European policy frameworks. Telecommunications Policy, 44(6), 101961. https://doi.org/10.1016/j.telpol.2020.101961

Walter, Y. (2024). Managing the race to the moon: Global policy and governance in Artifcial Intelligence regulation – A

contemporary overview and an analysis of socioeconomic consequences. Discover Artifcial Intellifence, 4(14), https://doi.org/10.1007/s44163-024-00109-4

Whittaker, M., Crawford, K., Dobbe, R., Fried, G., Kaiunas, E., Mathur, V., Myers, S., Richardson, R., Schultz, J., & Schwartz, O. (2018, diciembre). AI Now Report 2018. IA Now Institute. https://tinyurl.com/8v98uvas

Zajko, M. (2022, March). Artifcial intelligence, algorithms, and social inequality: Sociological contributions to contemporary

debates. Sociology Compass, 16(2), e12962. https://doi.org/10.1111/soc4.12962

Zueva, A., & Fairbrass, J. (2021). Politicising Government Engagement with Corporate Social Responsibility: “CSR” as

an Empty Signifer. Journal of Business Ethics, 170, 635-655. https://doi.org/10.1007/s10551-019-04330-5

Published

2024-08-07

How to Cite

Governance and ethical challenges in the business adoption of the artificial intelligence. (2024). Innovacion Empresarial, 4(2), e633. https://doi.org/10.37711/rcie.2024.4.2.633

Similar Articles

1-10 of 26

You may also start an advanced similarity search for this article.