Spectroradiometry Applied to the Analysis of Basaltic Rocks from the Serra Geral Group in Rio Grande do Sul, Brazil
DOI:
https://doi.org/10.37711/idac.2024.1.2.6Keywords:
Volcanism, Reflectance, Sample Position, Wavelength, Remote SensingAbstract
Objective. This study examines the influence of the positioning of basaltic rocks from the Serra Geral Group in Rio Grande do Sul, Brazil, on spectral signatures, analyzed using reflectance spectroscopy. Methods. Spectral signatures of six samples from different points of the spill were examined: base, core, and top; In addition to lava-sediment interactions, late amygdales, and an intrusive dike after deposition. A FieldSpec3 spectroradiometer
was used to obtain the spectral signatures. For each orientation, averages of 10 readings were obtained with 4 readings per sample, making a total of 240 spectral signatures. These were processed in ViewSpecPro v.6 software and simple exponential
smoothing was applied to mitigate spectral “noise”. Results. The results of the ANOVA analysis on variability, using the standard deviation of spectral signatures, show that, although all samples are basaltic, statistically signifcant differences were found between them (p < 0.05). It was also observed that samples with higher heterogeneity are more sensitive to positioning, especially in terms of reflectance and in the depth of the reflectance and spectral absorption bands. Conclusions. It is concluded that the positioning of the samples strongly influences the spectral signature and may be related to the structural, mineralogical and geometrical characteristics of each sample.
Downloads
References
Ahmad, L., Shah, M. T., & Khan, S. D. (2016). Reflectance spectroscopy and remote sensing data for finding sulfide-bearing alteration zones and mapping geology in Gilgit-Baltistan, Pakistan. Earth Science Informatics, 9(1), 113–121. https://doi.org/10.1007/S12145-015-0239-X/METRICS
Anbazhagan, S., & Arivazhagan, S. (2009). Reflectance spectra of analog basalts; implications for remote sensing of lunar geology. Planetary and Space Science, 57(12), 1346–1358. https://doi.org/10.1016/J.PSS.2009.06.020
Asadzadeh, S., & de Souza Filho, C. R. (2016). A review on spectral processing methods for geological remote sensing. International Journal of Applied Earth Observation and Geoinformation, 47, 69-90. https://doi.org/10.1016/J.JAG.2015.12.004
Badura, I., & Dabski, M. (2022). Reflectance spectroscopy in geology and soil sciences: literature review. Quaestiones Geographicae, 41(3), 157–167. https://doi.org/10.2478/QUAGEO-2022-0031
Barthez, M., Flahaut, J., Guitreau, M., Ito, G., & Pik, R. (2023). Understanding VNIR Plagioclase Signatures on Mars Through Petrographic, Geochemical, and Spectral Characterization of Terrestrial Feldspar-Bearing Igneous Rocks. Journal of Geophysical Research: Planets, 128(8), e2022JE007680. https://doi.org/10.1029/2022JE007680
Cloutis, E. A., Asher, P. M., & Mertzman, S. A. (2002). Spectral reflectance properties of zeolites and remote sensing implications. Journal of Geophysical Research: Planets, 107(E9), 5–1. https://doi.org/10.1029/2000JE001467
Cloutis, E. A., Klima, R. L., Kaletzke, L., Coradini, A., Golubeva, L. F., McFadden, L. A., Shestopalov, D. I., & Vilas, F. (2010). The 506 nm absorption feature in pyroxene spectra: Nature and implications for spectroscopy-based studies of pyroxene-bearing targets. Icarus, 207(1), 295–313. https://doi.org/10.1016/J.ICARUS.2009.11.025
Fang, Q., Hong, H., Zhao, L., Kukolich, S., Yin, K., & Wang, C. (2018). Visible and Near-Infrared Reflectance Spectroscopy for Investigating Soil Mineralogy: A Review. Journal of Spectroscopy, 2018(1), 3168974. https://doi.org/10.1155/2018/3168974
Frank, H. T. (2008). Gênese e padrões de distribuição de minerais secundários na formação Serra Geral (Bacia do Paraná). https://lume.ufrgs.br/handle/10183/15881
Instituto Brasileiro de Geografia e Estatística. (2023). Banco de Dados e Informações Ambientais, DBiA. https://bdiaweb.ibge.gov.br/#/consulta/geologia
Jensen, J. R. (2009). Sensoriamento Remoto do Ambiente: Uma Perspectiva em Recursos Terrestres (tradução da 2ª ed.). Information Systems, 2, 598. http://www.parentese.com.br/pdf/jensen.pdf
Jiang, G., Chen, X., Zhou, K., Wang, J., Zhou, S., & Bai, Y. (2024). Estimation of lithium content in rock debris based on spectral feature coefficients. Ore Geology Reviews, 171, 106167. https://doi.org/10.1016/J.OREGEOREV.2024.106167
Kalacska, M., Pablo Arroyo-Mora, J., Soffer, R., & Elmer, K. (2018). ASD FieldSpec3 field measurement protocols v1. https://doi.org/10.17504/PROTOCOLS.IO.QU7DWZN
Kokaly, R. F., Clark, R. N., Swayze, G. A., Livo, K. E., Hoefen, T. M., Pearson, N. C., Wise, R. A., Benzel, W., Lowers, H. A., Driscoll, R. L., & Klein, A. J. (2017). USGS Spectral Library Version 7. Data Series. https://doi.org/10.3133/DS1035
Laukamp, C., Rodger, A., Legras, M., Lampinen, H., Lau, I. C., Pejcic, B., Stromberg, J., Francis, N., & Ramanaidou, E. (2021). Mineral Physicochemistry Underlying Feature-Based Extraction of Mineral Abundance and Composition from Shortwave, Mid and Thermal Infrared Reflectance Spectra. Minerals, 11(4), 347. https://doi.org/10.3390/MIN11040347
Madani, A. (2015). Spectroscopy of olivine basalts using FieldSpec and ASTER data: A case study from Wadi Natash volcanic field, south Eastern Desert, Egypt. Journal of Earth System Science, 124(7), 1475–1486. https://doi.org/10.1007/S12040-015-0618-1/METRICS-BADGE
Mandon, L., Beck, P., Quantin-Nataf, C., Dehouck, E., Thollot, P., Loizeau, D., & Volat, M. (2022). ROMA: A Database of Rock Reflectance Spectra for Martian In Situ Exploration. Earth and Space Science, 9(1), e2021EA001871. https://doi.org/10.1029/2021EA001871
Murphy, R. J. (2015). Evaluating simple proxy measures for estimating depth of the ~ 1900 nm water absorption feature from hyperspectral data acquired under natural illumination. Remote Sensing of Environment, 166, 22–33. https://doi.org/10.1016/J.RSE.2015.05.029
Ong, C., Carrère, V., Chabrillat, S., Clark, R., Hoefen, T., Kokaly, R., Marion, R., Souza Filho, C. R., Swayze, G., & Thompson, D. R. (2019). Imaging Spectroscopy for the Detection, Assessment and Monitoring of Natural and Anthropogenic Hazards. Surveys in Geophysics, 40(3), 431–470. https://doi.org/10.1007/S10712-019-09523-1/TABLES/3-BADGE
Rader, E., Ackiss, S., Sehlke, A., Bishop, J., Orrill, B., Odegaard, K., Meier, M., & Doloughan, A. (2022). Average VNIR reflectance: A rapid, sample-free method to estimate glass content and crystallinity of fresh basaltic lava. Icarus, 383, 115084. https://doi.org/10.1016/J.ICARUS.2022.115084
Rossetti, L., Lima, E. F., Waichel, B. L., Hole, M. J., Simões, M. S., & Scherer, C. M. S. (2018). Lithostratigraphy and volcanology of the Serra Geral Group, Paraná-Etendeka Igneous Province in Southern Brazil: Towards a formal stratigraphical framework. Journal of Volcanology and Geothermal Research, 355, 98–114. https://doi.org/10.1016/J.JVOLGEORES.2017.05.008
Rost, E., Hecker, C., Schodlok, M. C., & van der Meer, F. D. (2018). Rock Sample Surface Preparation Influences Thermal Infrared Spectra. Minerals, 8(11), 475. https://doi.org/10.3390/MIN8110475
Secretaria de Planejamento, Governança e Gestão do RS. (2021). Atlas Socioeconômico do Rio Grande do Sul/Rio Grande do Sul (6ª ed.). Departamento de Planejamento Governamental. https://issuu.com/spggrs/docs/atlas_socioeconomico_do_rio_grande_do_sul
Sousa, J. G. de A. J., Melo, J. A. D., & Marques, A. G. (2008). Comportamento espectral dos solos na paisagem a partir de dados coletados por sensores terrestre e orbital. Revista Brasileira de Ciência Do Solo, 32(2), 727–738. https://doi.org/10.1590/S0100-06832008000200027
Xie, B., Wu, L., Mao, W., Zhou, S., & Liu, S. (2022). An Open Integrated Rock Spectral Library (RockSL) for a Global Sharing and Matching Service. Minerals, 12(2), 118. https://doi.org/10.3390/MIN12020118

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Lorenzo Fossa Sampaio Mexias, Morvana Machado, Laurindo Antonio Guassell, Deyvis Cano

This work is licensed under a Creative Commons Attribution 4.0 International License.