Uso de fibra de aguja de pino para mejorar las propiedades mecánicas del hormigón: una revisión sistemática

Autores/as

Palabras clave:

fibras de pino, influencia de la fibra de pino, propiedades del concreto con fibra, uso de la fibra de pino

Resumen

Objetivo. Realizar una revisión sistemática sobre la fibra de agujas pino agregadas para mejorar las propiedades mecánicas del hormigón. Métodos. Se aplicó una revisión sistemática de 80 artículos distribuidos en las bases de datos indexadas de la siguiente manera: 15 de Scopus, 30 de ProQuest, 11 de EBSCO, y 24 ScienceDirect, donde se encontraron 32 artículos del 2017 al 2019 y 48 artículos del 2020 al 2022. Desarrollo. Para la búsqueda de los artículos fueron usadas las siguientes palabras clave: fibras de pino, influencia de la fibra de pino, propiedades del concreto con fibra, uso de la fibra de pino. Se tiene como resultado que usando el 25 % y 50 % de fibras de pino mejora las propiedades mecánicas del concreto, aumenta-do un 12,6 % y 15,60 % de la resistencia a la compresión del hormigón. Conclusión. Se concluye que usar fibra de pino en el concreto puede aumentar la resistencia a la compresión como también puede aumentar su ductilidad y tenacidad, entre otras propiedades mecánicas

Citas

Abbas, S., Arshad, U., Abbass , W., Nehdi, M., & Ahmed , A. (2020). Recycling Untreated Coal Bottom Ash with Added Value for Mitigating Alkali–Silica Reaction in Concrete: A Sustainable Approach. Sustainable approach. Sustainability, 12(24), 1-24. doi: https://www.mdpi.com/2071-1050/12/24/10631#

Abbassi, F., & Ahmad, F. (2020). Behavior analysis of concrete with recycled tire rubber as aggregate using 3D-digital image correlation. Journal of Cleaner Production, 274,123074. https://doi.org/10.1016/j.jclepro.2020.123074

Abdelsamie, K., Agwa, I. S., Tayeh, B. A., & Hafez, R. D. (2021). Improving the brittle behaviour of highstrength concrete using keratin and glass fibres(Article). Advances in Concrete Construction, 12(6), 469-477. doi: 10.12989/acc.2021.12.6.469

Ahmed Shaikh, F. U. (2017). Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. International Journal of Sustainable Built Environment, 5(2), 277-287. https://doi.org/10.1016/j.ijsbe.2016.05.009

Ahmed, H. U., Rabar, F. H., Hilal, N., Mohammed, A. A., & Sherwani, A. H. (2021). Use of recycled fibers in concrete composites: A systematic comprehensive review. Composites Part B: Engineering, 215, 108769. doi: https://doi.org/10.1016/j.compositesb.2021.108769

Ahn, Y., Gook Jang, J., & H.K, L. (2017). Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures. Cement and Concrete Composites, 72, 27-38. doi: 10.1016/j.cemconcomp.2016.05.028

Alvarez, N., Gutierrez, J., Duran, G., & Pacheco, L. (2020). Experimental study of the mechanical effect of a clayey soil by adding rubber powder for geotechnical applications. Materials Science and Engineering, 758, 012057. doi: 10.1088/1757-899X/758/1/012057

Amin, M., Zeyad, A. M., Tayeh, B. A., & Saad Agwa, I. (2022). Effect of ferrosilicon and silica fume on mechanical, durability, and microstructure characteristics of ultra high-performance concrete. Construction and Building Materials, 320, 126233. doi: 10.1016/j.conbuildmat.2021.126233

Anupama, K., Priyadarsini, R. S., & Narayanan , S. (2019). Effect of Elevated Temperatures on the Mechanical Properties of Concrete. Procedia Structural Integrity, 14, 84-394. doi: 10.1016/j.prostr.2019.05.047

Bakri Abdullah, M. M., Bakri, Hussni , M., & Kamarudin, H. (2017). Review on fly ashbased geopolymer concrete without Portland Cement. Journal of Engineering and Technology Research, 3(1), 1-4. https://www.research-gate.net/publication/232276374_Review_on_fly_ash-based_geopolymer_concrete_without_Portland_Cement

Bashir H., O., Xiao, S., Zhenghong, T., Hao, L., & Guilin, J. (2019). Dynamic Compressive and Tensile Characteristics of a New Type of Ultra-High-Molecular Weight Polyethylene (UHMWPE) and Polyvinyl Alcohol (PVA) Fibers Reinforced Concrete. Shock and Vibration, 6382934. https://doi.org/10.1155/2019/6382934

Bin Young, W., & Kai Huang, J. (2019). The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Composites Part B: Engineering, 166, 272-283. https://doi.org/10.1016/j.compos-itesb.2018.12.013

Bradley, P. J., & Amirkhanian, S. N. (2017). Utilization of waste fibers in stone matrix asphalt mixtures. Resources, Conservation and Recycling, 42(3), 265-274. https://doi.org/10.1016/j.resconrec.2004.04.005

Coutts, R. S. (2017). A review of Australian research into natural fibre cement composites. Cement and Concrete Composites, 27(5), 518-526. https://doi.org/10.1016/j.cemcon-comp.2004.09.003

Dhivya, S., Manikandan, P., Devaraja, J., & Dhivyalakshmi, M. (2021). Study on Properties of Concrete Using Steel Fibers in M40 Grade Concrete. IOP Conference Series Materials Science and Engineering, 1145(1), 012080. http://dx.doi.org/10.1088/1757-899X/1145/1/012080

Bichang, D. O., Aramide, F. O., Oladele, I. O., & Alabi, O. O. (2022). A Review on the Parameters Affecting the Mechanical, Physical, and Thermal Properties of Natural/Synthetic Fibre Hybrid Reinforced Polymer Composites. Advances in Materials Science and Engineering, 28. https://doi.org/10.1155/2022/7024099

Du, H., & Zhang, M. (2020). Experimental investigation of thermal pore pressure in reinforced C80 high performance concrete slabs at elevated temperatures. Construction and Building Materials, 260, 120451. https://doi.org/10.1016/j.conbuildmat.2020.120451

Eisa, A. S., Elshazli, M. T., & Nawar, M. T. (2020). Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams. Construction and Building Materials, 252, 119078. https://doi.org/10.1016/j.conbuildmat.2020.119078

Ghosh, D., Abd-Elssamd, A., Ma, Z. J., & Hun, D. (2021). Development of high-early-strength fiberreinforced selfcom-pacting concrete (Article). Construction and Building Materials, 266, 121051. doi: 10.1016/j.conbuildmat.2020.121051

Huyen, B., Nassim , S., Mohamed , B., & Levacher , D. (2020). Determination and Review of Physical and Mechanical Properties of Raw and Treated Coconut Fibers for Their Recycling in Construction Materials. Cementitious Composites Reinforced with Recycled and Natural Fibers, 8(6), 3-10. https://doi.org/10.3390/fib8060037

Jianchen , C., Jinyun , J., Xiang , G., & Meiya , D. (2022). Improving the Mechanical Properties of Fly Ash-Based Geopolymer Composites with PVA Fiber and Powder. Materials, 15(7), 2363. http://dx.doi.org/10.3390/ma15072363

Jiang, C., Wang, Y., Wenwen , G., Chen, J., & Min , W. (2018). Experimental Study on the Mechanical Properties of Amorphous Alloy Fiber-Reinforced Concrete. Advances in Materials Science and Engineering, 2395083. https://doi.org/10.1155/2018/2395083

Jiangang , N., Wenming , X., Jingjun , L., & Jian, L. (2021). Influence of Cross-Sectional Shape on the Mechanical Properties of Concrete Canvas and CFRP-Reinforced Columns. Advances in Materials Science and Engineering, 5541587. https://doi.org/10.1155/2021/5541587

Junwei, Z., Zhe, Y., Shijie, L., & Hongjian, P. (2022). Investigation onmechanical property adjustment of multiscale hybrid fiberreinforced concrete. Case Studies in Construction Materials, 16, e01076. https://doi.org/10.1016/j.cscm.2022.e01076

Kaarthik, K., Prasanth, M., Karthic, S., & Gowtham, R. (2018). Enhancement of properties of concrete using natural fibers. Materials Today: Proceedings, 5(11), 23816-23823. 708, 012088. doi: 10.1088/1757-899X/708/1/012088

Krayushkina, K., Khymerk, T., y Bieliatynskyi, A. (2019). Basalt fiber concrete as a new construction. Materials Sci-ence and Engineering, 708, 012088. doi: 10.1088/1757-899X/708/1/012088

Kuqo, A., & Mai, C. (2021). Mechanical properties of lightweight gypsum composites comprised of seagrass Posidonia oceanica and pine (Pinus sylvestris) wood fibers. Construction and Building Materials, 282, 122714. https://doi.org/10.1016/j.conbuildmat.2021.122714

Layth, M., Ansari, M., Pua, G., Mohammad, J., & Saiful , I. (2017). A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science. https://doi.org/10.1155/2015/243947

Libre, N. A., Shekarchi, M., Mahoutian, M., & Soroushian, P. (2017). Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction and Building Materials, 25(5), 2458-2464. doi: 10.1016/j.conbuildmat.2010.11.058

Linling, M., Wang, B., Zeng, L., Yunfeng, X., Heng , Z., & Zhen , L. (2021). Experimental Investigation on the Effect of Rubber Powder on Mechanical Properties of PVA Fiber Con-crete. Advances in Civil Engineering, 6664416. https://doi.org/10.1155/2021/6664416

Long, W., & Wang, Y. (2021). Effect of pine needle fibre reinforcement on the mechanical properties of concrete. Construction and Building Materials, 278, 122333. https://doi.org/10.1016/j.conbuildmat.2021.122333

Lu, J., Liu, J., Yang, H., Gao, J., Wan, X., & Zhang, J. (2022). Influence of curing temperatures on the performances of fiberreinforced concrete. Construction and Building Materials, 339, 127640. https://doi.org/10.1016/j.conbuild-mat.2022.127640

Mahdi , R., Jahangir , M., Mohd Razman , S., Warid Hussin, M., & Elnaz , K. (2017). Investigation of coal bottom ash and fly ash in concrete as replacementfor sand and cement. Construction and Building Materials, 116, 14-24. https://doi.org/10.1016/j.conbuildmat.2016.04.080

Mejia Ballesteros, J. E., Santos, V., Mármol, G., Frías, M., & Fiorelli , J. (2017). Potential of the hornification treatment on eucalyptus and pine fibers for fibercement applica-tions. scientific documents at your fingertips, 24, 2275–2286. https://doi.org/10.1007/s10570-017-1253-6

Meng, C., Li, W., Cai, L., Shi, X., & Jiang, C. (2020). Experimental research on durability of high-performance synthetic fibers reinforced concrete: Resistance to sulfate attack and freezing-thawing. Construction and Building Materials, 262, 120055. doi: 10.1016/j.conbuildmat.2020.120055

Mengual, A., Juárez, D., Balart, R., & Ferrándiz, S. (2017). Mechanical characterization of composite materials based on pine needle residues processed by thermocompres-sion. Procedia Manufacturing, 13, 315-320. https://doi.org/10.1016/j.promfg.2017.09.081

Merta, I., & schegg, E. (2015). Fracture energy of natural fibre reinforced concrete. Construction and Building Materials, 14, 991-997. https://doi.org/10.1016/j.conbuildmat.2012.11.060

Meza, A., & Siddique, S. (2019). Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber. Construction and Building Materials, 213, 286-291. https://doi.org/10.1016/j.conbuildmat.2019.04.081

Miller, N. M., & Tehrani, F. M. (2017). Mechanical properties of rubberized lightweight aggregate concrete. Construction and Building Materials, 147, 264-271. https://doi.org/10.1016/j.conbuildmat.2017.04.155

Mushunje, K., Otieno, M., & Ballim, Y. (2018). A review of Waste Tyre Rubber as an Alternative Concrete Consituent Material. MATEC Web of Conferences, 199(6), 11003. doi: 10.1051/matecconf/201819911003

Mustafa, C. (2022). Investigation of mechanical properties of red pine needle fiber reinforced selfcompacting ultra high performance concrete. Case Studies in Construction Materials, 16. https://doi.org/10.1016/j.cscm.2022.e00970

Nematzadeh, M., Karimi, A., & Valukolaee, S. F. (2020). Com-pressive performance of steel fiber-reinforced rubberized concrete core detached from heated CFST. Construction and Building Materials, 239, 117832. https://doi.org/10.1016/j.conbuildmat.2019.117832

Nurazzi, N. M., Asyraf, M. R. M., Athiyah, S. F., Shazleen, S. S., Rafiqah, S. A., Harussani, M. M., Kamarudin, S. H., Razman, M. R., Rahmah, M, Zainudin, E. S., Ilyas, R. A., Aisyah, H. A., Norrrahim, M. N. F., Abdullah, N., Sapuan, S. M., Khalina, A. (2021). A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers, 13, 2170. doi: 10.3390/polym13132170

Oraimi, S., & Seibi, A. (2017). Mechanical characterisation and impact behaviour of concrete reinforced with natural fibres. Composite Structures, 32, 165-171. https://doi.org/10.1016/0263-8223(95)00043-7

Paricaguán, B. M., Albano, C. L., Torres, R. V., Camacho, N., Infante, J., & Muñoz, J. L. (2017). Efecto de las fibras de coco sobre la resistencia a la flexión de mezclas de hormigón. Materiales clave de ingeniería, 88(4), 424-4. https://dialnet.unirioja.es/servlet/articulo?codigo=4434557

Prakash, R., Thenmozhi, R., Raman, S., & Subramanian, C. (2020). Characterization of ecofriendly steel fiberreinforced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement.Faculty of Engineering and Built Environment, 21(1), 437-447. doi: 10.1002/suco.201800355

Qinwu, X., Huaxin, C., & Prozzi, J. A. (2017). Performance of fiber reinforced asphalt concrete under environmental temperature and water effects. Construction and Building Materials, 24, 2003-2010. https://doi.org/10.1016/j.con-buildmat.2010.03.012

Rabiaa, E., Mohamed, R., Sofi, W., & Tawfik, T. A. (2020). Developing Geopolymer Concrete Properties by Using Nanomaterials and Steel Fibers. Advances in Materials Science and Engineering, 5186091. https://doi.org/10.1155/2020/5186091

Raja Dhas, J. E., & Arunb, M. (2022). A review on development of hybrid composites for aerospace applications. materialstoday PROCEEDINGS. https://doi.org/10.1016/j.matpr.2022.04.511

Ryu, E., Kim, H., Chun, Y., & Yeo, H. (2020). Effect of heated areas on thermal response and structural behavior of reinforced concrete walls exposed to fire. Engineering Structures, 207, 110165. doi: 10.1016/j.engstruct.2020.110165

Saikia, N., & Brito, J. (2017). Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Construction and Building Materials, 52, 236–244. doi: 10.1016/j.conbuildmat.2013.11.049

Sandeep, G., Somit , G., Hitesh , S., Rakesh, & Kumar, P. (2019). Impact behavior of pine needle fiber/pistachio shell filler based epoxy composite. Journal of Physics, 1240(1), 012096. doi: 10.1088/1742-6596/1240/1/012096

Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2017). Applications of Natural Fibers and Its Composites: An Overview. Scientific Research An Academic Publisher, 7(3), 108-114. http://dx.doi.org/10.4236/nr.2016.73011

Sanjeev , J., & Nitesh , S. (2020). Study on the effect of steel and glass fibers on fresh and hardened properties of vibrated concrete and selfcompacting concrete. Weight Materials and Structures, 27, 1559 - 1568. doi: 10.1016/j.matpr.2020.03.208

Sanjeev, J., & Sai Nitesh, K. J. (2019). Study on the effect of steel and glass fibers on fresh and hardened properties of vibrated concrete and selfcompacting concrete. Materials Today: Proceedings, 27, 1559-1568. doi: 10.1016/j.matpr.2020.03.208

Saravanan, N., & Buvaneshwari, M. (2018). Experimental Investigation on Behaviour of Natural Fibre Concrete (Sisal Fibre). International Journal of Scientific Research & Engineering Trends, 4(3), 2395-566. https://ijsret.com/wp-content/uploads/2018/05/IJSRET_V4_issue3_253.pdf

Saucedo Rodriguez, J. A., Atoche Zamora, J. J., y Muñoz Pérez, S. P. (2021). Uso de los agregados PET en la elaboración del concreto: Revisión de la literatura. Avances Investigación en Ingeniería. 18(2), 1794-4953. https://doi.org/10.18041/1794-4953/avances.2.6942

Shereen, Q. A., Mohammad, S. N., Bahaa, H. A., & Hasan, Z. A. (2022). Mechanical and structural properties of waste rope fibersbased concrete: An experimental study. Case Studies in Construction Materials, 16, e00964. https://doi.org/10.1016/j.cscm.2022.e00964

Smita Mathur, P. S., & Pradeep Sharma, V. K. (2017). Potential of pine needles for PLA-based composites. Society of Plastics Engineers, 39(4), 1339-1349. https://doi.org/10.1002/pc.24074

Sukhoon , P., & Hyeong, K. K. (2017). Fresh and hardened properties of ultrahigh performance concrete incorporating coal bottom ash and slag powder. Construction and Building Materials, 131, 459-466. http://dx.doi.org/10.1016/j.conbuildmat.2016.10.109

Tang, Y., Feng, W., Chen, Z., Nong, Y., Yao, M., & Liu, J. (2021). Experimental and Theoretical Investigation on the Thermo-Mechanical Properties of Recycled Aggregate Con-crete Containing Recycled Rubber. Mechamics of Materials, 9, 655097. https://doi.org/10.3389/fmats.2021.655097

Teixeira Marvila, M., Azevedo Rocha, H., Garcez de Azevedo, A. R., Colorado, H. A., Zapata, J. F., & Fontes Vieira, C. M. (2021). Use of natural vegetable fibers in cementitious composites: concepts and applications. scientific documents at your fingertips, 6, 52-21. https://doi.org/10.1007/s41062-021-00551-8

Tioua, T., Kriker, A., Barluenga, G., & Palomar, I. (2017). Influence of date palm fiber and shrinkage reducing admixture on self-compacting concrete performance at early age in hot-dry environment. Construction and Building Materials, 154, 721-733. https://doi.org/10.1016/j.conbuild-mat.2017.07.229

Tolga Cogurco, M., & Uzun, M. (2021). The Taguchi Optimization of Mechanical and Durability Properties of Accelerator Added Concrete. Research Article, 1(1), 3-15. https://doi.org/10.2339/politeknik.857525

Tolga Cogurcu, M. (2022). Investigación de las propiedades mecánicas del hormigón autocompactante de ultra altas prestaciones reforzado con fibra de agujas de pino rojo. Casos de Estudio en Materiales de Construcción, 16,e00970. https://doi.org/10.1016/j.cscm.2022.e00970

Varona, F. B., & Baeza, F. J. (2017). Study of residual mechanical properties of concretes after exposure to high temperatures. Simulación y Modelización de Estructuras, 69(286), 235-241. doi: 10.1016/j.hya.2017.04.004

Waqas , A., Syed Hassan , F., Muhammad , U., Mehran , K., Ayaz , A., Fahid , A., . Muhammad , S. (2020). Effect of Coconut Fiber Length and Content on Properties of High Strength Concrete. Concrete Technology and Mechanical Properties of Concretes, 13(5), 1075. https://doi.org/10.3390/ma13051075

Wenhui , Z., Zexing , L., & Ruiqi , W. (2022). Effect of Fibers on the Mechanical Properties and Mechanism of Cast-In-Situ Foamed Concrete. Advances in Materials Science and Engineering, 2238187. https://doi.org/10.1155/2022/2238187

Xiaoyan Han, A. C., Xiaoyu Wang, M. C., & Tengteng Guo, Z. W. (2020). Mechanical and stress-strain behavior of basalt fiber reinforced rubberized recycled coarse aggregate con-crete. Construction and Building Materials, 260, 119888. https://doi.org/10.1016/j.conbuildmat.2020.119888

Xingyu , G., Tingting , X., & Fujian , N. (2017). Rheological behavior of basalt fiber reinforced asphalt mastic. Advances in Eco-Materials, 29, pages950–955. http://dx.doi.org/10.1007/s11595-014-1026-0

Yancong , Z., Lingling , G., & Wei , B. (2020). Mechanical Performance of Concrete Made with Recycled Aggregates from Concrete Pavements. Advances in Materials Science and Engineering, 5035763. https://doi.org/10.1155/2020/5035763

Yang Su, D., Yong Pang, J., & Wen Huang, X. (2021). Mechanical and Dynamic Properties of Hybrid Fiber Reinforced Fly-Ash Concrete. Advances in Civil Engineering,3145936. https://doi.org/10.1155/2021/3145936

Yildizel, S. A., Calis, G., & Tayeh, B. A. (2020). Mechanical and durability properties of ground calcium carbonate-added rollercompacted concrete for pavement. Journal of Ma-terials Research and Technology, 9(6), 13341-13351. doi: 10.1016/j.jmrt.2020.09.070

Yousif, R. A., Tayh, S. A., Al-Saadi, I. F., & Jasim, A. F. (2022). Propiedades Físicas y Reológicas del Aglomerante Asfáltico Modificado con Fibras Recicladas. Avances en Ingenieriía Civil, 2022, 1223467. https://doi.org/10.1155/2022/1223467

Zain, U. A., & Anwar, K. (2020). Effect of Pine Needle Fibers on Properties of Cementitious Mortars. Proceedings of the Pakistan Academy of Sciences, 57(4), 33–46. https://www.ppaspk.org/index.php/PPAS-A/article/view/441

Zamis Ehrenbring, H., Ortolan, V., Bolina, F., Pacheco, F., Masiero Gil, A., & Fonseca Tutikian, B. (2017). Residual strength evaluation of hollow core slabs of reinforced concrete of an industrial building after fire. Revista Materia, 22(3), 18-74. https://doi.org/10.1590/S1517-707620170003.0208

Zhensheng , G., Chunfeng , W., Mengye , X., & Jinxiang , C. (2018). Review of Basalt Fiber-Reinforced Concrete in China: Alkali Resistance of Fibers and Static Mechanical Properties of Composites. Advances in Materials Science and Engineering, 2-11. https://doi.org/10.1155/2018/9198656

Zhou, X., Saini, H., & Kastiukas, G. (2017). Engineering Properties of Treated Natural Hemp Fiber-Reinforced Con-crete. Division of Civil Engineering, 33(3). https://doi.org/10.3389/fbuil.2017.00033

Zhu, X., Chen, X., Zhang, N., Wang, X., & Diao, H. (2021). Ex-perimental and numerical research on triaxial mechanical behavior of self-compacting concrete subjected to freeze–thaw damage(Article). Construction and Building Materials, 288, 123110. doi: 10.1016/j.conbuildmat.2021.123110

Zsigmond, A. R., Száraz, A., & Urák, I. (2021). Macro and trace elements in the black pine needles as inorganic indicators of urban traffic emissions. Environmental Pollution, 291, 118228. https://doi.org/10.1016/j.envpol.2021.118228

Descargas

Publicado

2024-02-12