Uso de fibra de aguja de pino para mejorar las propiedades mecánicas del hormigón: una revisión sistemática
DOI:
https://doi.org/10.37711/idac.2024.1.1.6Palabras clave:
fibras de pino, influencia de la fibra de pino, propiedades del concreto con fibra, uso de la fibra de pinoResumen
Objetivo. Realizar una revisión sistemática sobre la fibra de agujas pino agregadas para mejorar las propiedades mecánicas del hormigón. Métodos. Se aplicó una revisión sistemática de 80 artículos distribuidos en las bases de datos indexadas de la siguiente manera: 15 de Scopus, 30 de ProQuest, 11 de EBSCO, y 24 ScienceDirect, donde se encontraron 32 artículos del 2017 al 2019 y 48 artículos del 2020 al 2022. Desarrollo. Para la búsqueda de los artículos fueron usadas las siguientes palabras clave: fibras de pino, influencia de la fibra de pino, propiedades del concreto con fibra, uso de la fibra de pino. Se tiene como resultado que usando el 25 % y 50 % de fibras de pino mejora las propiedades mecánicas del concreto, aumenta-do un 12,6 % y 15,60 % de la resistencia a la compresión del hormigón. Conclusión. Se concluye que usar fibra de pino en el concreto puede aumentar la resistencia a la compresión como también puede aumentar su ductilidad y tenacidad, entre otras propiedades mecánicas
Citas
Abbas, S., Arshad, U., Abbass , W., Nehdi, M., & Ahmed , A. (2020). Recycling Untreated Coal Bottom Ash with Added Value for Mitigating Alkali–Silica Reaction in Concrete: A Sustainable Approach. Sustainable approach. Sustainability, 12(24), 1-24. doi: https://www.mdpi.com/2071-1050/12/24/10631#
Abbassi, F., & Ahmad, F. (2020). Behavior analysis of concrete with recycled tire rubber as aggregate using 3D-digital image correlation. Journal of Cleaner Production, 274,123074. https://doi.org/10.1016/j.jclepro.2020.123074
Abdelsamie, K., Agwa, I. S., Tayeh, B. A., & Hafez, R. D. (2021). Improving the brittle behaviour of highstrength concrete using keratin and glass fibres(Article). Advances in Concrete Construction, 12(6), 469-477. doi: 10.12989/acc.2021.12.6.469
Ahmed Shaikh, F. U. (2017). Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. International Journal of Sustainable Built Environment, 5(2), 277-287. https://doi.org/10.1016/j.ijsbe.2016.05.009
Ahmed, H. U., Rabar, F. H., Hilal, N., Mohammed, A. A., & Sherwani, A. H. (2021). Use of recycled fibers in concrete composites: A systematic comprehensive review. Composites Part B: Engineering, 215, 108769. doi: https://doi.org/10.1016/j.compositesb.2021.108769
Ahn, Y., Gook Jang, J., & H.K, L. (2017). Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures. Cement and Concrete Composites, 72, 27-38. doi: 10.1016/j.cemconcomp.2016.05.028
Alvarez, N., Gutierrez, J., Duran, G., & Pacheco, L. (2020). Experimental study of the mechanical effect of a clayey soil by adding rubber powder for geotechnical applications. Materials Science and Engineering, 758, 012057. doi: 10.1088/1757-899X/758/1/012057
Amin, M., Zeyad, A. M., Tayeh, B. A., & Saad Agwa, I. (2022). Effect of ferrosilicon and silica fume on mechanical, durability, and microstructure characteristics of ultra high-performance concrete. Construction and Building Materials, 320, 126233. doi: 10.1016/j.conbuildmat.2021.126233
Anupama, K., Priyadarsini, R. S., & Narayanan , S. (2019). Effect of Elevated Temperatures on the Mechanical Properties of Concrete. Procedia Structural Integrity, 14, 84-394. doi: 10.1016/j.prostr.2019.05.047
Bakri Abdullah, M. M., Bakri, Hussni , M., & Kamarudin, H. (2017). Review on fly ashbased geopolymer concrete without Portland Cement. Journal of Engineering and Technology Research, 3(1), 1-4. https://www.research-gate.net/publication/232276374_Review_on_fly_ash-based_geopolymer_concrete_without_Portland_Cement
Bashir H., O., Xiao, S., Zhenghong, T., Hao, L., & Guilin, J. (2019). Dynamic Compressive and Tensile Characteristics of a New Type of Ultra-High-Molecular Weight Polyethylene (UHMWPE) and Polyvinyl Alcohol (PVA) Fibers Reinforced Concrete. Shock and Vibration, 6382934. https://doi.org/10.1155/2019/6382934
Bin Young, W., & Kai Huang, J. (2019). The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Composites Part B: Engineering, 166, 272-283. https://doi.org/10.1016/j.compos-itesb.2018.12.013
Bradley, P. J., & Amirkhanian, S. N. (2017). Utilization of waste fibers in stone matrix asphalt mixtures. Resources, Conservation and Recycling, 42(3), 265-274. https://doi.org/10.1016/j.resconrec.2004.04.005
Coutts, R. S. (2017). A review of Australian research into natural fibre cement composites. Cement and Concrete Composites, 27(5), 518-526. https://doi.org/10.1016/j.cemcon-comp.2004.09.003
Dhivya, S., Manikandan, P., Devaraja, J., & Dhivyalakshmi, M. (2021). Study on Properties of Concrete Using Steel Fibers in M40 Grade Concrete. IOP Conference Series Materials Science and Engineering, 1145(1), 012080. http://dx.doi.org/10.1088/1757-899X/1145/1/012080
Bichang, D. O., Aramide, F. O., Oladele, I. O., & Alabi, O. O. (2022). A Review on the Parameters Affecting the Mechanical, Physical, and Thermal Properties of Natural/Synthetic Fibre Hybrid Reinforced Polymer Composites. Advances in Materials Science and Engineering, 28. https://doi.org/10.1155/2022/7024099
Du, H., & Zhang, M. (2020). Experimental investigation of thermal pore pressure in reinforced C80 high performance concrete slabs at elevated temperatures. Construction and Building Materials, 260, 120451. https://doi.org/10.1016/j.conbuildmat.2020.120451
Eisa, A. S., Elshazli, M. T., & Nawar, M. T. (2020). Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams. Construction and Building Materials, 252, 119078. https://doi.org/10.1016/j.conbuildmat.2020.119078
Ghosh, D., Abd-Elssamd, A., Ma, Z. J., & Hun, D. (2021). Development of high-early-strength fiberreinforced selfcom-pacting concrete (Article). Construction and Building Materials, 266, 121051. doi: 10.1016/j.conbuildmat.2020.121051
Huyen, B., Nassim , S., Mohamed , B., & Levacher , D. (2020). Determination and Review of Physical and Mechanical Properties of Raw and Treated Coconut Fibers for Their Recycling in Construction Materials. Cementitious Composites Reinforced with Recycled and Natural Fibers, 8(6), 3-10. https://doi.org/10.3390/fib8060037
Jianchen , C., Jinyun , J., Xiang , G., & Meiya , D. (2022). Improving the Mechanical Properties of Fly Ash-Based Geopolymer Composites with PVA Fiber and Powder. Materials, 15(7), 2363. http://dx.doi.org/10.3390/ma15072363
Jiang, C., Wang, Y., Wenwen , G., Chen, J., & Min , W. (2018). Experimental Study on the Mechanical Properties of Amorphous Alloy Fiber-Reinforced Concrete. Advances in Materials Science and Engineering, 2395083. https://doi.org/10.1155/2018/2395083
Jiangang , N., Wenming , X., Jingjun , L., & Jian, L. (2021). Influence of Cross-Sectional Shape on the Mechanical Properties of Concrete Canvas and CFRP-Reinforced Columns. Advances in Materials Science and Engineering, 5541587. https://doi.org/10.1155/2021/5541587
Junwei, Z., Zhe, Y., Shijie, L., & Hongjian, P. (2022). Investigation onmechanical property adjustment of multiscale hybrid fiberreinforced concrete. Case Studies in Construction Materials, 16, e01076. https://doi.org/10.1016/j.cscm.2022.e01076
Kaarthik, K., Prasanth, M., Karthic, S., & Gowtham, R. (2018). Enhancement of properties of concrete using natural fibers. Materials Today: Proceedings, 5(11), 23816-23823. 708, 012088. doi: 10.1088/1757-899X/708/1/012088
Krayushkina, K., Khymerk, T., y Bieliatynskyi, A. (2019). Basalt fiber concrete as a new construction. Materials Sci-ence and Engineering, 708, 012088. doi: 10.1088/1757-899X/708/1/012088
Kuqo, A., & Mai, C. (2021). Mechanical properties of lightweight gypsum composites comprised of seagrass Posidonia oceanica and pine (Pinus sylvestris) wood fibers. Construction and Building Materials, 282, 122714. https://doi.org/10.1016/j.conbuildmat.2021.122714
Layth, M., Ansari, M., Pua, G., Mohammad, J., & Saiful , I. (2017). A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science. https://doi.org/10.1155/2015/243947
Libre, N. A., Shekarchi, M., Mahoutian, M., & Soroushian, P. (2017). Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction and Building Materials, 25(5), 2458-2464. doi: 10.1016/j.conbuildmat.2010.11.058
Linling, M., Wang, B., Zeng, L., Yunfeng, X., Heng , Z., & Zhen , L. (2021). Experimental Investigation on the Effect of Rubber Powder on Mechanical Properties of PVA Fiber Con-crete. Advances in Civil Engineering, 6664416. https://doi.org/10.1155/2021/6664416
Long, W., & Wang, Y. (2021). Effect of pine needle fibre reinforcement on the mechanical properties of concrete. Construction and Building Materials, 278, 122333. https://doi.org/10.1016/j.conbuildmat.2021.122333
Lu, J., Liu, J., Yang, H., Gao, J., Wan, X., & Zhang, J. (2022). Influence of curing temperatures on the performances of fiberreinforced concrete. Construction and Building Materials, 339, 127640. https://doi.org/10.1016/j.conbuild-mat.2022.127640
Mahdi , R., Jahangir , M., Mohd Razman , S., Warid Hussin, M., & Elnaz , K. (2017). Investigation of coal bottom ash and fly ash in concrete as replacementfor sand and cement. Construction and Building Materials, 116, 14-24. https://doi.org/10.1016/j.conbuildmat.2016.04.080
Mejia Ballesteros, J. E., Santos, V., Mármol, G., Frías, M., & Fiorelli , J. (2017). Potential of the hornification treatment on eucalyptus and pine fibers for fibercement applica-tions. scientific documents at your fingertips, 24, 2275–2286. https://doi.org/10.1007/s10570-017-1253-6
Meng, C., Li, W., Cai, L., Shi, X., & Jiang, C. (2020). Experimental research on durability of high-performance synthetic fibers reinforced concrete: Resistance to sulfate attack and freezing-thawing. Construction and Building Materials, 262, 120055. doi: 10.1016/j.conbuildmat.2020.120055
Mengual, A., Juárez, D., Balart, R., & Ferrándiz, S. (2017). Mechanical characterization of composite materials based on pine needle residues processed by thermocompres-sion. Procedia Manufacturing, 13, 315-320. https://doi.org/10.1016/j.promfg.2017.09.081
Merta, I., & schegg, E. (2015). Fracture energy of natural fibre reinforced concrete. Construction and Building Materials, 14, 991-997. https://doi.org/10.1016/j.conbuildmat.2012.11.060
Meza, A., & Siddique, S. (2019). Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber. Construction and Building Materials, 213, 286-291. https://doi.org/10.1016/j.conbuildmat.2019.04.081
Miller, N. M., & Tehrani, F. M. (2017). Mechanical properties of rubberized lightweight aggregate concrete. Construction and Building Materials, 147, 264-271. https://doi.org/10.1016/j.conbuildmat.2017.04.155
Mushunje, K., Otieno, M., & Ballim, Y. (2018). A review of Waste Tyre Rubber as an Alternative Concrete Consituent Material. MATEC Web of Conferences, 199(6), 11003. doi: 10.1051/matecconf/201819911003
Mustafa, C. (2022). Investigation of mechanical properties of red pine needle fiber reinforced selfcompacting ultra high performance concrete. Case Studies in Construction Materials, 16. https://doi.org/10.1016/j.cscm.2022.e00970
Nematzadeh, M., Karimi, A., & Valukolaee, S. F. (2020). Com-pressive performance of steel fiber-reinforced rubberized concrete core detached from heated CFST. Construction and Building Materials, 239, 117832. https://doi.org/10.1016/j.conbuildmat.2019.117832
Nurazzi, N. M., Asyraf, M. R. M., Athiyah, S. F., Shazleen, S. S., Rafiqah, S. A., Harussani, M. M., Kamarudin, S. H., Razman, M. R., Rahmah, M, Zainudin, E. S., Ilyas, R. A., Aisyah, H. A., Norrrahim, M. N. F., Abdullah, N., Sapuan, S. M., Khalina, A. (2021). A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers, 13, 2170. doi: 10.3390/polym13132170
Oraimi, S., & Seibi, A. (2017). Mechanical characterisation and impact behaviour of concrete reinforced with natural fibres. Composite Structures, 32, 165-171. https://doi.org/10.1016/0263-8223(95)00043-7
Paricaguán, B. M., Albano, C. L., Torres, R. V., Camacho, N., Infante, J., & Muñoz, J. L. (2017). Efecto de las fibras de coco sobre la resistencia a la flexión de mezclas de hormigón. Materiales clave de ingeniería, 88(4), 424-4. https://dialnet.unirioja.es/servlet/articulo?codigo=4434557
Prakash, R., Thenmozhi, R., Raman, S., & Subramanian, C. (2020). Characterization of ecofriendly steel fiberreinforced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement.Faculty of Engineering and Built Environment, 21(1), 437-447. doi: 10.1002/suco.201800355
Qinwu, X., Huaxin, C., & Prozzi, J. A. (2017). Performance of fiber reinforced asphalt concrete under environmental temperature and water effects. Construction and Building Materials, 24, 2003-2010. https://doi.org/10.1016/j.con-buildmat.2010.03.012
Rabiaa, E., Mohamed, R., Sofi, W., & Tawfik, T. A. (2020). Developing Geopolymer Concrete Properties by Using Nanomaterials and Steel Fibers. Advances in Materials Science and Engineering, 5186091. https://doi.org/10.1155/2020/5186091
Raja Dhas, J. E., & Arunb, M. (2022). A review on development of hybrid composites for aerospace applications. materialstoday PROCEEDINGS. https://doi.org/10.1016/j.matpr.2022.04.511
Ryu, E., Kim, H., Chun, Y., & Yeo, H. (2020). Effect of heated areas on thermal response and structural behavior of reinforced concrete walls exposed to fire. Engineering Structures, 207, 110165. doi: 10.1016/j.engstruct.2020.110165
Saikia, N., & Brito, J. (2017). Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Construction and Building Materials, 52, 236–244. doi: 10.1016/j.conbuildmat.2013.11.049
Sandeep, G., Somit , G., Hitesh , S., Rakesh, & Kumar, P. (2019). Impact behavior of pine needle fiber/pistachio shell filler based epoxy composite. Journal of Physics, 1240(1), 012096. doi: 10.1088/1742-6596/1240/1/012096
Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2017). Applications of Natural Fibers and Its Composites: An Overview. Scientific Research An Academic Publisher, 7(3), 108-114. http://dx.doi.org/10.4236/nr.2016.73011
Sanjeev , J., & Nitesh , S. (2020). Study on the effect of steel and glass fibers on fresh and hardened properties of vibrated concrete and selfcompacting concrete. Weight Materials and Structures, 27, 1559 - 1568. doi: 10.1016/j.matpr.2020.03.208
Sanjeev, J., & Sai Nitesh, K. J. (2019). Study on the effect of steel and glass fibers on fresh and hardened properties of vibrated concrete and selfcompacting concrete. Materials Today: Proceedings, 27, 1559-1568. doi: 10.1016/j.matpr.2020.03.208
Saravanan, N., & Buvaneshwari, M. (2018). Experimental Investigation on Behaviour of Natural Fibre Concrete (Sisal Fibre). International Journal of Scientific Research & Engineering Trends, 4(3), 2395-566. https://ijsret.com/wp-content/uploads/2018/05/IJSRET_V4_issue3_253.pdf
Saucedo Rodriguez, J. A., Atoche Zamora, J. J., y Muñoz Pérez, S. P. (2021). Uso de los agregados PET en la elaboración del concreto: Revisión de la literatura. Avances Investigación en Ingeniería. 18(2), 1794-4953. https://doi.org/10.18041/1794-4953/avances.2.6942
Shereen, Q. A., Mohammad, S. N., Bahaa, H. A., & Hasan, Z. A. (2022). Mechanical and structural properties of waste rope fibersbased concrete: An experimental study. Case Studies in Construction Materials, 16, e00964. https://doi.org/10.1016/j.cscm.2022.e00964
Smita Mathur, P. S., & Pradeep Sharma, V. K. (2017). Potential of pine needles for PLA-based composites. Society of Plastics Engineers, 39(4), 1339-1349. https://doi.org/10.1002/pc.24074
Sukhoon , P., & Hyeong, K. K. (2017). Fresh and hardened properties of ultrahigh performance concrete incorporating coal bottom ash and slag powder. Construction and Building Materials, 131, 459-466. http://dx.doi.org/10.1016/j.conbuildmat.2016.10.109
Tang, Y., Feng, W., Chen, Z., Nong, Y., Yao, M., & Liu, J. (2021). Experimental and Theoretical Investigation on the Thermo-Mechanical Properties of Recycled Aggregate Con-crete Containing Recycled Rubber. Mechamics of Materials, 9, 655097. https://doi.org/10.3389/fmats.2021.655097
Teixeira Marvila, M., Azevedo Rocha, H., Garcez de Azevedo, A. R., Colorado, H. A., Zapata, J. F., & Fontes Vieira, C. M. (2021). Use of natural vegetable fibers in cementitious composites: concepts and applications. scientific documents at your fingertips, 6, 52-21. https://doi.org/10.1007/s41062-021-00551-8
Tioua, T., Kriker, A., Barluenga, G., & Palomar, I. (2017). Influence of date palm fiber and shrinkage reducing admixture on self-compacting concrete performance at early age in hot-dry environment. Construction and Building Materials, 154, 721-733. https://doi.org/10.1016/j.conbuild-mat.2017.07.229
Tolga Cogurco, M., & Uzun, M. (2021). The Taguchi Optimization of Mechanical and Durability Properties of Accelerator Added Concrete. Research Article, 1(1), 3-15. https://doi.org/10.2339/politeknik.857525
Tolga Cogurcu, M. (2022). Investigación de las propiedades mecánicas del hormigón autocompactante de ultra altas prestaciones reforzado con fibra de agujas de pino rojo. Casos de Estudio en Materiales de Construcción, 16,e00970. https://doi.org/10.1016/j.cscm.2022.e00970
Varona, F. B., & Baeza, F. J. (2017). Study of residual mechanical properties of concretes after exposure to high temperatures. Simulación y Modelización de Estructuras, 69(286), 235-241. doi: 10.1016/j.hya.2017.04.004
Waqas , A., Syed Hassan , F., Muhammad , U., Mehran , K., Ayaz , A., Fahid , A., . Muhammad , S. (2020). Effect of Coconut Fiber Length and Content on Properties of High Strength Concrete. Concrete Technology and Mechanical Properties of Concretes, 13(5), 1075. https://doi.org/10.3390/ma13051075
Wenhui , Z., Zexing , L., & Ruiqi , W. (2022). Effect of Fibers on the Mechanical Properties and Mechanism of Cast-In-Situ Foamed Concrete. Advances in Materials Science and Engineering, 2238187. https://doi.org/10.1155/2022/2238187
Xiaoyan Han, A. C., Xiaoyu Wang, M. C., & Tengteng Guo, Z. W. (2020). Mechanical and stress-strain behavior of basalt fiber reinforced rubberized recycled coarse aggregate con-crete. Construction and Building Materials, 260, 119888. https://doi.org/10.1016/j.conbuildmat.2020.119888
Xingyu , G., Tingting , X., & Fujian , N. (2017). Rheological behavior of basalt fiber reinforced asphalt mastic. Advances in Eco-Materials, 29, pages950–955. http://dx.doi.org/10.1007/s11595-014-1026-0
Yancong , Z., Lingling , G., & Wei , B. (2020). Mechanical Performance of Concrete Made with Recycled Aggregates from Concrete Pavements. Advances in Materials Science and Engineering, 5035763. https://doi.org/10.1155/2020/5035763
Yang Su, D., Yong Pang, J., & Wen Huang, X. (2021). Mechanical and Dynamic Properties of Hybrid Fiber Reinforced Fly-Ash Concrete. Advances in Civil Engineering,3145936. https://doi.org/10.1155/2021/3145936
Yildizel, S. A., Calis, G., & Tayeh, B. A. (2020). Mechanical and durability properties of ground calcium carbonate-added rollercompacted concrete for pavement. Journal of Ma-terials Research and Technology, 9(6), 13341-13351. doi: 10.1016/j.jmrt.2020.09.070
Yousif, R. A., Tayh, S. A., Al-Saadi, I. F., & Jasim, A. F. (2022). Propiedades Físicas y Reológicas del Aglomerante Asfáltico Modificado con Fibras Recicladas. Avances en Ingenieriía Civil, 2022, 1223467. https://doi.org/10.1155/2022/1223467
Zain, U. A., & Anwar, K. (2020). Effect of Pine Needle Fibers on Properties of Cementitious Mortars. Proceedings of the Pakistan Academy of Sciences, 57(4), 33–46. https://www.ppaspk.org/index.php/PPAS-A/article/view/441
Zamis Ehrenbring, H., Ortolan, V., Bolina, F., Pacheco, F., Masiero Gil, A., & Fonseca Tutikian, B. (2017). Residual strength evaluation of hollow core slabs of reinforced concrete of an industrial building after fire. Revista Materia, 22(3), 18-74. https://doi.org/10.1590/S1517-707620170003.0208
Zhensheng , G., Chunfeng , W., Mengye , X., & Jinxiang , C. (2018). Review of Basalt Fiber-Reinforced Concrete in China: Alkali Resistance of Fibers and Static Mechanical Properties of Composites. Advances in Materials Science and Engineering, 2-11. https://doi.org/10.1155/2018/9198656
Zhou, X., Saini, H., & Kastiukas, G. (2017). Engineering Properties of Treated Natural Hemp Fiber-Reinforced Con-crete. Division of Civil Engineering, 33(3). https://doi.org/10.3389/fbuil.2017.00033
Zhu, X., Chen, X., Zhang, N., Wang, X., & Diao, H. (2021). Ex-perimental and numerical research on triaxial mechanical behavior of self-compacting concrete subjected to freeze–thaw damage(Article). Construction and Building Materials, 288, 123110. doi: 10.1016/j.conbuildmat.2021.123110
Zsigmond, A. R., Száraz, A., & Urák, I. (2021). Macro and trace elements in the black pine needles as inorganic indicators of urban traffic emissions. Environmental Pollution, 291, 118228. https://doi.org/10.1016/j.envpol.2021.118228
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Revista Científica de Ingeniería, Diseño y Arquitectura Contemporánea
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.